### NASA TECHNICAL MEMORANDUM

NASA TM X-64584

## CASE FILE COPY

### LRV OPERATIONAL BEHAVIOR STUDY

By Fritz Kramer Astronautics Laboratory

February 12, 1971

NASA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

| 1. RECOPENT NO. TM X-64584  4. TITLE AND SUBTITLE LRV Operational Behavior Study  7. AUTHOR (S) Fritz Kramer  9. PERFORMING ORGANIZATION NAME AND ADDRESS George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812  12. SPONSORING AGENCY NAME AND ADDRESS National Aeronautics and Space-Administration Washington, D. C. 20546  15. SUPPLEMENTARY NOTES Prepared by Astronautics Laboratory, Science and Engineering  16. ABSTRACT Operational behavior of the LRV under lunar gravitation has been studied using a four-wheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation in comparison to mass or inertia forces.  19. SECURITY CLASSIF. (ed this report) Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified S 3. 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      | TECHNICAL                                                                | REPORT STANDA                            | RD TITLE PAGE                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------|---------------------------------|
| LRV Operational Behavior Study  7. AUTHOR IS)  Fritz Kramer  9. PERFORMING ORGANIZATION NAME AND ADDRESS George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812  12. SPONSORING AGENCY NAME AND ADDRESS NATIONAL ACTIONAL ACTION AGENCY NAME AND ADDRESS NATIONAL ACTIONAL ACTIO |                                                                                                      | 2. GOVERNMENT ACCESSION NO.                                              | 3. RECIPIENT'S CAT                       | ALOG NO.                        |
| LRV Operational Behavior Study  7. AUTHOR (S)  Fritz Kramer  9. WERFORMING ORGANIZATION NAME AND ADDRESS  George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812  12. SPONSORING AGENCY NAME AND ADDRESS  National Aeronautics and Space-Administration  Washington, D. C. 20546  15. SUPPLEMENTARY NOTES  Prepared by Astronautics Laboratory, Science and Engineering  16. ABSTRACT  Operational behavior of the LRV under lunar gravitation has been studied using a fourwheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation argavitation is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  18. DISTRIBUTION STATEMENT  Unclassified-Unlimited  Tug Kramer  21. NO. OF PAGES 22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4. TITLE AND SUBTITLE                                                                                |                                                                          | 5. REPORT DATE                           |                                 |
| 7. AUTHOR IS) Fritz Kramer 9. PERFORMING ORGANIZATION NAME AND ADDRESS George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812  12. SPONSORING AGENCY NAME AND ADDRESS NATIONAL AETONAUTICS and Space Administration Washington, D. C. 20546  15. SUPPLEMENTARY NOTES Prepared by Astronautics Laboratory, Science and Engineering  16. ABSTRACT  Operational behavior of the LRV under lunar gravitation has been studied using a fourwheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  16. DISTRIBUTION STATEMENT Unclassified-Unlimited  17. KEY WORDS  18. DISTRIBUTION STATEMENT Unclassified-Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | }                                                                                                    | Ì                                                                        | February 12,                             | 1971                            |
| Fritz Kramer  9. PEFORMING ORGANIZATION NAME AND ADDRESS George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812  12. SPONSORING AGENCY NAME AND ADDRESS NAtional Aeronautics and Space Administration Washington, D. C. 20546  15. SUPPLEMENTARY NOTES Prepared by Astronautics Laboratory, Science and Engineering  16. ABSTRACT  Operational behavior of the LRV under lunar gravitation has been studied using a fourwheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  17. KEY WORDS  18. DISTRIBUTION STATEMENT Unclassified-Unlimited  19. SECURITY CLASSIF, (of this report)  19. SECURITY CLASSIF, (of this report)  20. SECURITY CLASSIF, (of this report)  21. NO. OF PAGES 22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LRV Operational Behavior Stud                                                                        | у                                                                        |                                          |                                 |
| George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812  12. SPONSORING AGENCY NAME AND ADDRESS National Aeronautics and Space Administration Washington, D. C. 20546  15. SUPPLEMENTARY NOTES Prepared by Astronautics Laboratory, Science and Engineering  16. ABSTRACT  Operational behavior of the LRV under lunar gravitation has been studied using a fourwheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  18. DISTRIBUTION STATEMENT Unclassified—Unlimited  19. SECURITY CLASSIF, (of this report)  10. WORK UNIT NO.  11. CONTRACT OR GRANT NO.  12. TYPE OF REPORT NO.  13. TYPE OF REPORT NO.  14. SPONSORING AGENCY CODE  15. SPONSORING AGENCY CODE  16. ABSTRACT  Operational behavior of the LRV under lunar gravitation has been studied using a fourwheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                          | 8. PERFORMING ORGA                       | NIZATION REPORT #               |
| George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812  12. SPONSORING AGENCY NAME AND ADDRESS NAtional Aeronautics and Space Administration Washington, D. C. 20546  15. SUPPLEMENTARY NOTES Prepared by Astronautics Laboratory, Science and Engineering  16. ABSTRACT  Operational behavior of the LRV under lunar gravitation has been studied using a fourwheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  17. KEY WORDS  18. DISTRIBUTION STATEMENT Unclassified—Unlimited  19. SECURITY CLASSIF, (of this report)  19. SECURITY CLASSIF, (of this report)  20. SECURITY CLASSIF, (of this page)  21. NO. OF PAGES  22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      | 200                                                                      | 40 WORK WILL NO                          |                                 |
| Marshall Space Flight Center, Alabama 35812  12. SPONSORING AGENCY NAME AND ADDRESS National Aeronautics and Space-Administration Washington, D. C. 20546  15. SUPPLEMENTARY NOTES Prepared by Astronautics Laboratory, Science and Engineering  16. ABSTRACT  Operational behavior of the LRV under lunar gravitation has been studied using a fourwheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  16. DISTRIBUTION STATEMENT Unclassified—Unlimited  17. KEY WORDS  18. DISTRIBUTION STATEMENT Unclassified—Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9. PERFORMING ORGANIZATION NAME AND AL                                                               | DRESS                                                                    | 10. WORK UNIT NO.                        | 1                               |
| 13. TYPE OF REPORT A PERIOD COVERED National Aeronautics and Space-Administration Washington, D. C. 20546  15. SUPPLEMENTARY NOTES Prepared by Astronautics Laboratory, Science and Engineering  16. ABSTRACT  Operational behavior of the LRV under lunar gravitation has been studied using a fourwheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  18. DISTRIBUTION STATEMENT Unclassified—Unlimited  19. SECURITY CLASSIF. (of this report)  20. SECURITY CLASSIF. (of this page)  21. NO. OF PAGES  22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , ,                                                                                                  | 1                                                                        | 11. CONTRACT OR GR                       | ANT NO.                         |
| National Aeronautics and Space Administration Washington, D. C. 20546  15. Supplementary notes Prepared by Astronautics Laboratory, Science and Engineering  16. ABSTRACT  Operational behavior of the LRV under lunar gravitation has been studied using a fourwheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  18. DISTRIBUTION STATEMENT Unclassified—Unlimited  19. SECURITY CLASSIF. (of this report)  20. SECURITY CLASSIF. (of this page)  21. NO. OF PAGES  22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Marshall Space Flight Center,                                                                        |                                                                          |                                          |                                 |
| National Aeronautics and Space Administration Washington, D. C. 20546  15. Supplementary notes Prepared by Astronautics Laboratory, Science and Engineering  16. ABSTRACT  Operational behavior of the LRV under lunar gravitation has been studied using a four-wheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  16. Distribution statement Unclassified-Unlimited  17. KEY WORDS  18. DISTRIBUTION STATEMENT Unclassified-Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 SPONSORING AGENCY NAME AND ADDRESS                                                                |                                                                          | 13. TYPE OF REPORT                       | & PERIOD COVERED                |
| Washington, D. C. 20546  15. Supplementary notes Prepared by Astronautics Laboratory, Science and Engineering  16. ABSTRACT  Operational behavior of the LRV under lunar gravitation has been studied using a fourwheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  18. DISTRIBUTION STATEMENT Unclassified-Unlimited  19. SECURITY CLASSIF. (of this report)  20. SECURITY CLASSIF. (of this page)  21. NO. OF PAGES  22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                          |                                          |                                 |
| 15. SUPPLEMENTARY NOTES  Prepared by Astronautics Laboratory, Science and Engineering  16. ABSTRACT  Operational behavior of the LRV under lunar gravitation has been studied using a fourwheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  18. DISTRIBUTION STATEMENT  Unclassified-Unlimited  Thy Words  19. SECURITY CLASSIF. (of this report)  20. SECURITY CLASSIF. (of this page)  21. NO. OF PAGES  22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                    | Tummber action                                                           | Technical Me                             | emorandum                       |
| Prepared by Astronautics Laboratory, Science and Engineering  16. ABSTRACT  Operational behavior of the LRV under lunar gravitation has been studied using a four-wheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  18. DISTRIBUTION STATEMENT  Unclassified-Unlimited  Tity Lament  19. SECURITY CLASSIF. (of this report)  20. SECURITY CLASSIF. (of this page)  21. NO. OF PAGES  22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | washington, D.C. 20040                                                                               | ·                                                                        | 14. SPONSORING AG                        | ENCY CODE                       |
| Prepared by Astronautics Laboratory, Science and Engineering  16. ABSTRACT  Operational behavior of the LRV under lunar gravitation has been studied using a four-wheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  18. DISTRIBUTION STATEMENT  Unclassified-Unlimited  Tity Lament  19. SECURITY CLASSIF. (of this report)  20. SECURITY CLASSIF. (of this page)  21. NO. OF PAGES  22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15 SUDDIEMENTARY NOTES                                                                               |                                                                          |                                          |                                 |
| Operational behavior of the LRV under lunar gravitation has been studied using a four-wheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  18. DISTRIBUTION STATEMENT  Unclassified-Unlimited  Tig. Warmer  19. SECURITY CLASSIF, (of this report)  20. SECURITY CLASSIF, (of this page)  21. NO. OF PAGES  22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15, SUFFLEMENTANT NUTES                                                                              |                                                                          |                                          | į                               |
| Operational behavior of the LRV under lunar gravitation has been studied using a four-wheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  18. DISTRIBUTION STATEMENT  Unclassified-Unlimited  The Words  19. SECURITY CLASSIF. (of this report)  20. SECURITY CLASSIF. (of this page)  21. NO. OF PAGES  22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prepared by Astronautics Labor                                                                       | ratory, Science and Engineering                                          |                                          | ļ                               |
| wheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.  18. DISTRIBUTION STATEMENT  Unclassified-Unlimited  Tuy Words  19. SECURITY CLASSIF. (of this report)  20. SECURITY CLASSIF. (of this page)  21. NO. OF PAGES  22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16. ABSTRACT                                                                                         |                                                                          |                                          |                                 |
| Unclassified-Unlimited  Tuty Would  19. SECURITY CLASSIF. (of this page)  20. SECURITY CLASSIF. (of this page)  21. NO. OF PAGES  22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | horizontal, and sloping planes<br>component of the gravitational<br>is characterized by its creation | under the influence of the individual force. Because of the low value of | il wheel forces a<br>f lunar gravitation | and the grade<br>on, all motion |
| 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17. KEY WORDS                                                                                        | 18. DISTRIBUTION STA                                                     | TEMENT                                   |                                 |
| 19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                    | Trloogifi- J                                                             | Unlimited                                |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                          |                                          |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19. SECURITY CLASSIF. (of this report)                                                               | 20. SECURITY CLASSIF. (of this page)                                     | 21. NO. OF PAGES                         | 22. PRICE                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unclassified                                                                                         |                                                                          | 61                                       | \$3.00                          |

MSFC - Form 3292 (May 1969)

### TABLE OF CONTENTS

|                                                                     | Page        |
|---------------------------------------------------------------------|-------------|
| SUMMARY                                                             | 1           |
| INTRODUCTION                                                        | 1           |
| FORCES ACTING ON THE WHEEL                                          | 2           |
| General                                                             | 2<br>4<br>7 |
| STEERING EFFECTS                                                    | 22          |
| Front-Wheel Steering Failure on Horizontal Plane (Driving at 400 W) | 22          |
| (Driving at 400 W)                                                  | 24          |
| (Driving at 400 W)                                                  | 26          |
| with Countersteering (Driving at 400 W)                             | 28          |
| Rear-Wheel Steering Failure While Coasting                          | 30          |
| Four-Wheel Steering Failure                                         | 32          |
| Four- and Two-Wheel Steering                                        | 34          |
| APPENDIX. TRACTION FORCES AT VARIOUS ELECTRIC                       |             |
| POWER LEVELS AS A FUNCTION OF WHEEL                                 | 4.0         |
| CDEED                                                               | 48          |

### LIST OF ILLUSTRATIONS

| Figure | Title                                                                                    | Page |
|--------|------------------------------------------------------------------------------------------|------|
| 1.     | Basic wheel forces                                                                       | 3    |
| 2.     | Tractive force coefficients                                                              | 4    |
| 3.     | Braking force coefficient                                                                | 5    |
| 4.     | Cornering force coefficient                                                              | 6    |
| 5.     | Driving at 200 W, typical performance                                                    | 8    |
| 6.     | Driving at 300 W, typical performance                                                    | 9    |
| 7.     | Driving at 400 W, typical performance                                                    | 10   |
| 8.     | Braking, typical performance                                                             | 11   |
| 9.     | Identification of symbols                                                                | 12   |
| 10.    | Front-wheel steering failure on horizontal plane, (driving at 400 W)                     | 23   |
| 11.    | Front-wheel steering failure on horizontal plane with countersteering (driving at 400 W) | 25   |
| 12.    | Front-wheel steering failure on slopes (driving at 400 W)                                | 27   |
| 13.    | Front-wheel steering failure on slopes with counter-<br>steering (driving at 400 W)      | 29   |
| 14.    | Rear-wheel steering failure while coasting                                               | 31   |
| 15.    | Four-wheel steering failure while coasting                                               | 33   |
| 16.    | Driving at 200 W with two- and four-wheel steering programs                              | 35   |
| 17.    | Driving at 400 W with two-wheel steering program                                         | 36   |
| 18.    | Driving at 400 W with four-wheel steering program                                        | 37   |

### LIST OF TABLES

| Table       | Title                                                                           | Page |
|-------------|---------------------------------------------------------------------------------|------|
| 1.          | Driving Straight Ahead on 10 deg Uphill Slope at 200 W                          | . 13 |
| 2.          | Driving Straight Ahead on Horizontal Plane at 400 W                             | . 14 |
| 3.          | Driving Straight Ahead on Double Slope, 20 deg Down, 10 deg Side, at 400 W      | . 15 |
| 4.          | Driving Straight Ahead on Double Slope, 10 deg Down, 10 deg Side, at 400 W      | . 16 |
| 5.          | Driving Straight Ahead on Horizontal Plane with 10 deg<br>Side Slope at 400 W   | . 17 |
| 6.          | Driving Straight Ahead on Double Slope, 10 deg Up, 10 deg Side, at 400 W        | . 18 |
| 7.          | Driving Straight Ahead on Double Slope, 20 deg Up, 10 deg Side, at 400 W        | . 19 |
| 8.          | Braking While Coasting Straight Ahead on Double Slope, 10 deg Down, 10 deg Side | . 20 |
| 9.          | Braking While Coasting on Horizontal Plane with 10 deg<br>Side Slope            | . 21 |
| 10.         | Front-Wheel Steering Failure on Horizontal Plane (Driving at 400 W)             | . 38 |
| 11.         | Front-Wheel Steering Failure with Countersteering, 400 W, Horizontal            | . 39 |
| 12.         | Front-Wheel Steering Failure on 7.5 deg Side Slope (Driving at 400 W)           | . 40 |
| <b>1</b> 3. | Front-Wheel Steering Failure on 15 deg Side Slope                               | . 41 |

## LIST OF TABLES (Concluded)

| Table | Title                                                                        | Page |
|-------|------------------------------------------------------------------------------|------|
| 14.   | Front-Wheel Steering Failure on 7.5 deg Downslope (Driving at 400 W)         | 42   |
| 15.   | Front-Wheel Steering Failure on 15 deg Downslope (Driving at 400 W)          | 43   |
| 16.   | Front-Wheel Steering Failure with Countersteering, 400 W, 7.5 deg Side Slope | 44   |
| 17.   | Front-Wheel Steering Failure with Countersteering, 400 W, 15 deg Side Slope  | 45   |
| 18.   | Front-Wheel Steering Failure with Countersteering, 400 W, 7.5 deg Downslope  | 46   |
| 19.   | Front-Wheel Steering Failure with Countersteering, 400 W, 15 deg Downslope   | 47   |
| A-1.  | Mechanical Output of LRV Traction Drive                                      | 49   |
| A-2.  | Electrical Power Input for Various Wheel Conditions                          | 50   |
| A-3.  | Power Consumption Caused by Free-Rolling Resistance                          | 52   |
| A-4.  | Free Traction Force at One Wheel                                             | 53   |
| A-5.  | Summary of Free Traction Forces and T/W Values                               | 54   |

#### LRV OPERATIONAL BEHAVIOR STUDY

### SUMMARY

Operational behavior of the LRV under lunar gravitation has been studied using a four-wheel mathematical model with three degrees of freedom. Motion was determined on smooth, horizontal, and sloping planes under the influence of the individual wheel forces and the grade component of the gravitational force. Because of the low value of lunar gravitation, all motion is characterized by its creation through acceleration forces, which are small in comparison to mass or inertia forces.

#### INTRODUCTION

In these studies, the wheel-soil interaction forces were computed for each one of the four wheels of the LRV, according to the individual wheel speed and the general operating conditions to be studied. The components of these forces in the longitudinal and lateral direction of the vehicle yield the translatory accelerations, while the moment of these forces about the vertical axis through the vehicle's center of mass yields the rotational acceleration. The motion of the vehicle within a moon-fixed coordinate system is then obtained by step-wise integration; motion on an inclined or sloping plane can be determined by introducing two slope angles in the x- and y-direction of the moon-fixed coordinate system.

No bumps, surface irregularities, or sprung wheel systems have been considered.

The study could not be based on detailed, precise numerical values of the various forces acting on the wheels, since experimental data covering all operational conditions are not available. This lack of data is also noticeable in the area of systems data such as the free traction forces of the drive system in its powered and unpowered operations, the effect of temperature extremes on drive system efficiency, and others.

An attempt has been made to obtain the needed data by analysis, incorporating data from tests on some of the mechanical systems, as well as wheel-soil interaction test data available in literature.

For the above reasons, the study should not be considered to be a performance analysis; its results are intended to indicate typical response or behavior patterns of the LRV when subjected to the operational conditions as they may prevail on the moon.

# FORCES ACTING ON THE WHEEL General

The forces acting on the LRV wheel under general operating conditions are depicted in Figure 1. They are:

- A radial wheel load (acting in the plane of the wheel and perpendicular to the plane supporting the wheel)
- T traction force, thrust (providing positive acceleration in the forward direction of the vehicle; no driving in reverse considered)
- B braking force (creating a negative acceleration opposite to the direction of motion)
- side force, cornering force (acting perpendicular to the plane of the wheel, direction and magnitude depending on the yaw angle that the wheel plane makes with the instantaneous velocity vector of the wheel)

Since vehicle motion in this study takes place on a smooth, plane surface, no vertical acceleration occurs. If the surface is also horizontal, the sum of the four radial wheel loads must be equal to the weight of the vehicle at all times, the individual wheel load depending on the location of the wheel relative to the vehicle's center of mass. However, when the vehicle is in motion, it accelerates, decelerates, makes turns, and moves on horizontal as well as on sloping ground. This causes the load distribution between the four wheels to change continuously, which, in turn, causes the reaction forces B, T, and S to change also; they change proportionally to the wheel load A. Therefore,

each powered wheel will contribute to the vehicle thrust according to its loading. This assumption is compatible with a multiple wheel drive control, where each drive operates independently of the other. Since the remaining reaction forces B and S are also proportional to the wheel loading A , the wheel forces may be expressed as

$$T = \mu_{T} \cdot A ,$$
 
$$B = \mu_{B} \cdot A ,$$
 
$$S = k_{s} \cdot A ,$$

where  $\mu$  and  $k_{_{\mathbf{S}}}$  are dimensionless force coefficients.

The individual  $\mu$ - and k -values should reflect their dependency upon wheel velocity and yaw angle, respectively, as well as any other effect that may be known to exist.



Figure 1. Basic wheel forces

### Magnitude of Force Coefficients

The force coefficients used in this study could not be based on actual tests pertaining to the LRV but had to be construed from information in the literature.

The traction force coefficient, representing the free force available at the circumference of the wheel as a function of electric power input and wheel (or vehicle) speed, has not yet been determined experimentally. For this study, it had to be derived analytically from general mechanical laws as discussed in the appendix. The coefficients obtained as a function of wheel speed for various power levels are shown in Figure 2.



Figure 2. Tractive force coefficients.

The braking force coefficient  $\mu_B$  is shown in Figure 3. It was assumed to be constant in the speed range from 0 to 10.5 km/hr at a value of 0.525.

This assumption is equivalent to optimum brake application resulting in shortest braking distance and time; in actuality, these optimum values may not be attainable, and actual braking distances will be greater. Above a velocity of 10.5 km/hr the braking coefficient is shown to tend toward a lower value, because at the higher wheel speed, the wheel's slippage tends to change to pure slip with reduced braking efficiency. This is a general tendency of wheels on hard surfaces, which may not be entirely correct for wheels in loose or lunar soil. However, from an operational point of view, it may represent a more realistic brake application at the higher speed at which the possibility of locking the wheel because of reduced wheel-soil interaction should be avoided.



Figure 3. Braking force coefficient.

Cornering forces produced by the LRV wheel under a yaw angle in lunar soil are not presently known. However, tests performed by H. Schwanghart<sup>1</sup> and G. Krick<sup>2</sup> with rubber-tired wheels in loose soil showed results which appear to be applicable to the LRV.

While cornering force tests with wheels on hard surfaces show a force coefficient leveling off at higher yaw angles (to approximately  $k_{\rm S}=0.6$  at 35 deg yaw), the force tests in loose soil show no such limit but continue to increase in magnitude. Figure 4 shows the values used in this study.

Cornering force tests with the LRV wheel in simulated lunar soil are presently under preparation at Waterways Experiment Station, Vicksburg, Mississippi. Test results may become available by mid-March 1971.



Figure 4. Cornering force coefficient,

<sup>1.</sup> H. Schwanghart: Lateral Forces on Steered Tyres in Loose Soil. Journal of Terramechanics, Vol. 5, No. 1, Institute for Agricultural Machinery, TH Munchen, Pergamon Press Ltd, Great Britain, 1968.

<sup>2.</sup> G. Krick: Systems for Measuring Forces and Moments in Power-Driven, Yawing Wheels, the Pressure Distribution and Stresses in the Plane of Contact, as well as the Tire Deformations. Working Conference of the 3rd Section of C. I. G. R. at Wageningen, The Netherlands, October 19-23, 1970, Nederlandse Vereniging Technieck in de Landbouw (in German).

### Straight-Ahead Motion Without Steering

Using the traction coefficients shown in Figure 1 for the three power levels of 200, 300, and 400 W, the vehicle was started from rest (v = 0.10 m/s) on horizontal and inclined planes with slopes of 20, 10, -10, and -20 deg. The results are presented in Figures 5 through 7 showing the time and distance required to attain speeds of 4, 8, 12, and 16 km/hr, a speed of 16 km/hr being attainable only on downslopes of greater than 5 deg.

The effect of optimum braking is presented in Figure 8, showing the time and distance required to bring the vehicle to a complete stop from an initial speed of 16, 12, 8, and 4 km/hr, respectively. On a horizontal plane, for instance, with an initial speed of 12 km/hr, it would require a distance of 6.9 m (23 ft) to bring the LRV to a stop within 3.9 s. However, on a 20-deg downslope, it would require 24.6 m and 14.1 s.

Figure 9 has been included to identify the symbols appearing in Tables 1 through 9, which are computer printouts of some of the cases shown in Figures 5 through 8. Tables 3 through 9, representing the motion of the LRV on side-sloping terrain up to 20 deg, may be of particular interest; these are not shown in the figures. The tables give the magnitude of the side forces (cornering forces) exerted by the ground on the wheel caused by the side slope; they also give an indication of the initial oscillation of the LRV (about its vertical axis) at the beginning of the drive on a side-sloping terrain.



Figure 5. Driving at 200 W, typical performance.



Figure 6. Driving at 300 W, typical performance.



Figure 7. Driving at 400 W, typical performance.



Figure 8. Braking, typical performance.



COURSE ANGLE  $\vartheta$ VEHICLE ORIENTATION  $\omega$ WITHIN MOON-FIXED
(x-,y-,) COORDINATE SYSTEM



WHEEL IDENTIFICATION FOR WHEEL LOADS  $\mathbf{A_n}, \mathbf{B_n}, \mathbf{AND} \mathbf{S_n}$ 

WHEEL IDENTIFICATION (n) (NEUTRAL WHEEL POSITION)

Figure 9. Identification of symbols.

| * 5      | 00.0 | 0.00       | 0.0   |   |       |      | 30.0  |       |         | •     | •           | •         | 000   | •     |       | • •   |        |       | •     | 0.00  | •     | •     | • •    | •     | 000     | •     | •       | •    | •    |       | 90.0  | •       | •      | •                       | •     |      |       |      |       | 0.00  | •        | •        |       |          | •    | •    |             |
|----------|------|------------|-------|---|-------|------|-------|-------|---------|-------|-------------|-----------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|--------|-------|---------|-------|---------|------|------|-------|-------|---------|--------|-------------------------|-------|------|-------|------|-------|-------|----------|----------|-------|----------|------|------|-------------|
| 23       |      |            |       |   |       |      |       |       |         |       |             |           |       |       |       |       |        |       |       |       |       |       |        |       |         |       |         |      |      |       |       |         |        |                         |       |      |       |      |       |       |          |          | 00.0  |          |      |      |             |
| 25       | 00.0 | 00.0       | 00.0  |   |       |      | 00.0  | 00.0  | 00.0    | 00.0  | 00.0        | 00.0      | 0.00  | 000   | 00.0  |       | 00.0   | 00.0  | 00.0  | 00.0  | 00.0  | 00.0  |        | 00.0  | 00.0    | 00.0  | 00.0    | 00.0 | 00.0 |       | 00.0  | 00.0    | 00.0   | 00.0                    | 9     |      | 000   | 00.0 | 00.0  | 00.0  | 00.0     | 0.0      | 00.0  | 0000     | ) c  | 3 6  | 200         |
| ī        | •    | •          | •     | • |       |      |       | •     |         | •     | •           | •         | •     | •     | •     |       |        |       | •     | •     | •     | •     |        |       |         | •     | •       | •    | •    | •     |       | -       | •      | •                       |       |      |       |      |       | -     | •        | •        | 00.0  | • •      | •    |      |             |
| #<br>9   | •    | •          | 86.7  | • | •     |      |       | •     |         | •     | •           | •         | 6.70  | •     | •     | 77.0  |        | •     | 7.70  | •     | •     | 7.38  | 7.22   | : :   | 7.00    | •     | 6 . 9 5 |      |      | 7.3   | 69.9  | •       | •      |                         |       |      |       | _    | ~     | 6.31  | ~        | ā.,      | 6.12  | 7        |      | 7    |             |
| 63       |      | 9.0        | 12.36 |   |       |      | : :   |       | •       | 9.27  | 4.07        | 8 6 8     | 8.70  | ÷     | •     | 77.0  | •      |       |       | 'n    | •     | •     | 7.22   | : -   | 7 . 0 6 | •     | 6.95    | 6.89 |      | 7.7   |       | + 9 • 9 | 09.9   | 9.0                     | 70.0  | . 4  |       | 6.37 |       | 16.9  | ~        | -:       | 6.12  | 77.5     | •    |      |             |
| 8.2      | •    | •          | 77.9  |   |       | : :  | 2.4.5 | *     |         | •     | •           | ŝ         | •     | ? '   | •     | : :   | -      | 9     | •     | •     | •     |       | 4.77   |       | 4.70    | •     | •       | •    | 20.0 |       | a.    | Ŧ       | *      | # (<br># ;              |       |      | 4.37  | :    | ~     |       | ~        | 7        | 4.22  | Э С      | Э 0  | 3.05 | ٠.          |
| 7 8      | •    | •          | 6.77  |   | : :   | : -  | ٠.    | •     | :       | •     | :           | ŝ         | *     | •     | ?'    | ¥ -   | : =    | . 0   | 0     | •     | 4.90  | •     | 4.77   | * 7 * |         | :     | •       | 1111 | 'n   | 0     | S     | 4 • 4 9 | 4 • 46 | T :                     | 7 4   |      |       | 4.35 |       | 4.31  |          | 7        | 4.22  | 9 9      | •    |      | ٠.          |
| <b>*</b> | 1.0  | •          | 34.70 |   |       | 3    | : -   | 3 . 5 | 3.0     | -     | ÷           | 3.0       | 33.01 |       | 32.86 |       | 9      | . 6   | 2 • 5 | :     | *     | ~     | 32035  | : :   | . ~     | 2 . 2 | 7:      | 2.1  | ; ;  |       |       | 2.0     | 2      | •                       | •     |      |       |      | 9 .   | 80    | 9        | 7:       |       | - :      | ن پ  |      |             |
| 64       |      | <b>3</b> ( | 34.70 |   |       |      | : :   | 3.5   | 3.3     | 3.2   | ÷           | 3.0       | 33.01 |       | 34.00 |       | 2.6    | 2.4   | 5.5   | 2.4   | •     | 32.39 | _      | 2.2   | 7       | 2.2   | 7 - 7   | 7:   | 7    | 2 . 0 | 32.05 | 2.0     | 7.0    | •                       | •     | 5    | •     | •    | 8.    | :     |          | ٠        | ~ -   | 31.00    | •    | : :  |             |
| A2       | •    | •          | 18.47 |   |       |      | 20.03 | -     | ~       | *     | 9.0         | 9.5       | 20.66 | •     | •     | 20.95 | ; -    | :     | :     | 21.16 | -:    | •     | 21.32  | : :   | *       | *     |         |      |      | 21.59 | 9     | 21.64   | 21.66  | 21.68                   | 21.72 |      | 21.75 | _    | _     | 21.80 | •        | •        |       | 22.00    | 2.0  |      | - :         |
| ₹        | ~    | •          | 10.77 |   |       |      |       |       |         | 0     | 0.5         | 9.5       | 20.64 |       | 9 6   |       | •      | :     | :     | =     | 7     | 7     | : :    |       | *       | *     | :       | •    | • .  | : :   | :     | :       | •      | • :                     | : :   | : -  | : :   | :    | :     | _     | •        | <u>.</u> | 21.89 | <b>,</b> | 0    | ; ;  | •           |
| OMEGA    | 00.0 | D•0        | 20.0  |   |       |      | 00.0  | 00.0  | 00.0-   | 00.0  | 00.0        | -00.0     | -0.00 | 00.0  | 00.00 | 00.00 | - 0000 | 00.0  | 00.0- | 00.0- | 00.0  | 00.0  |        |       | 000     | 00.0- | 00.0-   | 0.00 | 00.0 |       | 0.00  | 00.0    | 00.0   | 00.0                    |       |      | 00.0- | 00.0 | 00.00 | 00.0  | 00.0     | 00.0     | 00.0  | 20.0     | 30.0 | 2 6  | )<br>)<br>) |
| THETA    | 00.0 | 00.0       | 00.0  |   |       | 1000 | 00.0  | 0000  | 00.0    | -0.00 | 00.0-       | 00.0      | 00.0- | 00.0  | 00.0  |       | 00.0   | 00.0  | 03.0  | 00.0- | -0.00 | 00.0  | 1 20 0 | 000   | 00.0    | 00.0  | 09.0-   | 00.0 | 00.0 |       | 00.0  | 00.0    | 20.0   | 00.0                    |       | 00.0 | 00.0  | 00.0 | 00.0- | 00.0  | 00.0     | 0.00     | 00.0- | 00.0     | 20.0 | 3 6  | ) (         |
| ž<br>×   | 00.0 | 00.0       |       |   |       | 00.0 | 00.0  | 00.0  | 00.0    | 00.0  | 00.0-       | 0.00      | 00.0  | 00.0  |       |       | 00.0   | 00.0- | 00.0  | 00.0  | 00.0  | 00.00 |        | 00.0  | 00.0    | 00.0  | 00.0    | 00.0 | 00.0 |       | 00.0  | 00.0    | 00.0   | 00.0                    |       | 00.0 | 00.0  | 00.0 | 00.0  | 00.0  | 00.0     | 00.0     | 00.0  | 0000     | 00.0 |      | ) (         |
| E        | 00.0 | 10.0       |       | 5 | 0.622 | 0.30 | 0.38  | 8 . 0 | 0 • 5 B | 69.0  | 18.0        | . 0 • 9 4 | 1.07  | 07.1  | 7 7   | 9     | 1.81   | 1.97  | E - 5 | 7.31  | 2.48  | 99.7  | 3.03   | 3.21  | 3.41    | 3.60  | 3.80    | 00.  |      |       | 4.62  | 5.03    | 5 . 25 | 5 - 4<br>6 - 4<br>6 - 4 | 2.90  | 6.12 | 6.34  | 25.9 | 9.90  | 7.02  | 7.25     | 7 · · ·  | •     | 9        |      |      | ٠.          |
| >        | -    |            | : :   |   |       | 7    | 7     | 04.0  | 15.0    | Ş     | •           |           | 24.0  | 0 / 0 | 1     | 3.7   | 0.0    | 0.82  | ****  | 4:    | 39.0  | 3     |        | 64.0  | •       | 96.0  | 66.0    | •    | 70.  |       | 1.05  | 1.0     | •      |                         | • •   | 777  | -     | 1.13 | -     |       | <u>.</u> | = :      | 6 7   | -1127    | /2.1 | 96.  |             |
| 3 11     |      | •          |       | • |       |      | •     | ·     |         |       | <b>5</b> ·1 | •         | 5.0   | •     |       |       | •      | •     |       | ٠     | e :   |       |        |       |         | •     | 2:1     | •    |      |       | 4.7   | •       | -7-1   |                         |       | •    | •     | •    | •     | 9.7   | •        | •        |       | 14.0     |      | 200  |             |

|                    |   | 9 3       |      | ,     | 2       | <u>.</u> | <u> </u> = | 2 =    | . 2   | 2          | 2    | =     | 2       | 2      | 2    | . 2    | 2     |        | 2       | 2 :   | 2 :   | 2 4      | 2 =     |       | 2 3  | 3 3   | 2         | . 2   |        | 2    | 2 :    | 2 :      | 2 3          | 2 2        | 2     | . 2     | 2      | 2 :        | 2 :         | 2           | 33                                                                               | 2 01     | 2     | 2       | 00     | 90    | 00     | 2      | 2      |
|--------------------|---|-----------|------|-------|---------|----------|------------|--------|-------|------------|------|-------|---------|--------|------|--------|-------|--------|---------|-------|-------|----------|---------|-------|------|-------|-----------|-------|--------|------|--------|----------|--------------|------------|-------|---------|--------|------------|-------------|-------------|----------------------------------------------------------------------------------|----------|-------|---------|--------|-------|--------|--------|--------|
| S.                 |   |           | å    | ė     | å       | ċ        | 3          | 5      | å     | Ġ          | å    | å     | å       | å      | ċ    | ċ      | ċ     | i      | ċ       | ċ     | • •   | <b>.</b> | 5 6     |       |      | å     | å         | ċ     | 0      | ė    | å      |          | 5 6          |            | å     | ċ       | ċ      | Ġ          | ċ           | هٔ ا        | åå                                                                               | å        | ö     | ċ       | a      | ċ     | å      | ċ      | ċ      |
| 53                 | - |           | 00.0 | 00.0  | 00.00   | 00.0     | 9          |        | 000   | 00.0       | 00.0 | 00.0  | 00.0    | 00.0   | 00.0 | 00.0   | 00.0  | 00.00  | 00.0    | 000   | 00.0  | 000      | 0 0     | 900   |      |       | 00.0      | 00.0  | 00.0   | 00.0 | 00.0   | 00.0     |              | 0000       | 00.0  | 00.0    | 00.0   | 00         | 000         | 00.0        | 0000                                                                             | 0.00     | 00.0  | 00.0    | 00.0   | 00.0  | 00.0   | 00.0   | 000    |
| 52                 | 9 |           | 00.0 | 00.0  | 00.0    | 00.0     | 000        |        | 000   | 00.0       | 0000 | 93.0  | 0.00    |        |      | 00.0   | 00.0  | -00.0  | 00.0    | 00.0  | 000   | 3 3      |         | 00.0  |      |       | 00.0      | 00.0  | 00.0   | 00.0 | 07.0   | 0 0      |              | 900        | 00.0  | 00.0    | 00.0   | ?          | 000         | 00.0        | 000                                                                              | 00.0     | 00.00 | 0.00    | 00.0   | 0.00  | 00.0   | 00.0   | 00.0   |
| 400 W              | 0 |           | 00.0 | 00.0  | 00.0    | 00.0     | 00.0       |        | 00.0  | 00.0       | 00.0 | 00.0  | 00.0    | 00.0   | 00.0 | 00.0   | 00.0  | 00.0   | 00.0    | 800   | 00.0  | 000      |         |       |      |       | 00.0      | 00.0  | 00.00  | 0.00 | 00.0   | 000      | 9 6          |            | 00.0  | 00.0    | 00.0   | 000        | 000         | 20.0        | 000                                                                              | 00.0     | 00.0  | 00.0    | 00.0   | 00.0  | 00.0   | 00.0   | 0.00   |
| AT,                | - | 27.63     | . 63 | 09.2  | 2 • 5 2 | 6.0      | 4          | 2 4    | 87.   | 3.26       | 2,33 | . 48  | 18.0    | 0.50   | 9.62 | 60.6   | 6.59  | 51.8   | . 75    | 90.   |       | •        | 7 7 7   | ? ?   |      | 5.32  | -         | 3     | 1.68   | *    | 7      | -        | 0 7          |            | •     | 3.50    | ~      | ?          | • •         |             | 2.4<br>2.8<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0 | ~        | *     | 2.35    | ~      | -     | 0.50   | •      | 0.21   |
| PLANE              |   | 77 640    |      |       |         |          | 1          | ם<br>י | 3 6   | 92         |      | 0     | 1 18    | 20 1   | 7 9  | 60     | 29    | 15     | 75      | 9 9   | 0 .   | •        | 7 :     | - 64  |      | 30    |           | 6.0   | 9 9    | 0.7  | 10     | * 1      | 0.5          | *          | 79    | 20      | 98     | 27         | 9 ;         | 0 0         | .s 4                                                                             |          |       |         |        | •     | 5.0    | •      | 21     |
| H                  | - |           | 22   | 22    | 22      | 7        |            |        | 7     |            | ٠-   |       | -       | _      |      |        | _     | 10     | 1       | _ '   | •     | •        | •       |       | 1 1  | , .   | - 40      | •     | -      | ;    | *      | <b>.</b> | •            | 9 ~        |       | ~       | •      | •          | <b>.</b>    | ٠<br>:      | 2 .                                                                              |          |       | 2.3     |        | -     | 0      | •      | ò      |
| NTA                |   | 7.0       |      | •     |         | •        |            | •      |       |            |      |       | •       | •      | •    | •      | •     | •      | •       | •     | •     | •        | •       |       |      | 3.76  | •         | •     | •      | ٠    | 3.16   | •        | •            |            | ۲.    | ÷       | e i    | •          | •           | •           | 2 - 2 2                                                                          |          | •     | 9       | 0      | •     | *      | •      | •      |
| HORIZONTA          |   | 7/05/1    | -    | -     | -       | ∞ ⋅      | N 4        | 0 4    | 0 0   |            | 3 1  | . *   | Ŋ       | 0      | €.   | ď      | 5.37  | -      | •       | •     | •     | *        |         | - :   | 3 9  | 3.76  | •         | -Z    |        | . 2  | 3.16   | 0        | •            |            | -     | 5 • 6 5 | Š      | Š          | 2 • 43      | •           | 2.29                                                                             | 2.14     | 1.991 | 1 • 6 7 | 1 • 00 | 0.97  | 0.43   | 1 . 0  | 0.1    |
| H NO               | - | 31:00     | . 6  | B • 7 | 8.7     | 8 . 7    | 9          |        |       | 9 4        |      | •     | 4       | 4.2    |      | 3.7    | 3.5   | 3.3    | 7       | ~     | 7.7   | ~ (      |         | 32.17 | •    | 31.94 |           | 1 . 7 | 4 •    |      | 31.43  | -        | 7 .          | 31.17      |       | 1.0     | 9.0    | 30         | 30.62       | ر • تا<br>ا | 30.71                                                                            | 3 6      | 3     | 30.38   | 9.7    | 9.7   | 29.36  | 29.35  | 29.19  |
| AHEAD              |   | 31.00     |      | 8.7   | $\sim$  | ~        | 10.33      |        |       | <b>9</b> 4 | ٠,   | 14.87 | S.      | ~      |      | $\sim$ | 3.5   | 3.3    | 7.1     | 32.95 |       |          | * *     |       | •    | 34.05 | 3         | :     | 9.1    | . 5  | -      |          | 7:           | : :        | 91.06 | 91.00   | 10.94  | 90.88      | 20.62       | /08         | 30.71                                                                            |          | 14.00 |         | _      | `     | ä      | 29.35  |        |
|                    |   | 9 3       |      | *     |         |          |            |        | 0 3   |            | ٠.   | 9.    | 2       | ~      | 0    | *      |       | 6      | 7       | ٠     |       | ٠.       |         | 2.5   | 7 4  | n 4   | . ~       |       | 8      | 30   | 2      | •        | <b>.</b>     |            |       | õ       | 9      | 2.5        | <b>30</b> / | <b>7</b> :  | 3.79                                                                             | - 0      |       | ::      | : `:   | -     | -      | •      | 5.31   |
| STRAIGHT           |   | 7 000     |      | 74 1  | 1 9/    | 1 6/1    |            |        |       |            |      | 63    | 1 /6.   | .24 2  | 5 05 | .74 2  | 7 16. | 1 61 9 | .37 2   | 555 2 | .73 2 | 89 2     | 2 50.   | 2 02. | 7    | 45.   | 2 7 7 7   | 76 2  | · 88 2 | . 98 | 07 2   | 91.      | 24 5         | 2 7 7 5    | .44   | 7 05.   | .56 2  | 7 79.      | 99.         | 2 67.       | .79 2                                                                            |          | 7 60  | 12 2    | 7 4 2  | .76 2 | 14 2   | 15 2   | .31 2  |
| ${ m STR}$         | , | 5         |      | _     | 1.5     | - 5      | 9 .        |        |       |            | -    | •     | 6-      | 20     | 20   | 20     | 20    | 21     | 7       | 7.    | 5     | 7        | 22      | 77 :: | ,    | 7 6   | 22        | 22    | 22     | 22   | 23     | 23       | 23           | 2 2        | 23    | 53      | 23     | 23         | 23          | 23          | 23                                                                               | , ה<br>ה | 2 4   | 7 7     | 7.7    | ₹ .   | 5.2    | 52     | 52     |
| DRIVING<br>A OMEGA |   | 00.0      | 000  | 00.0  | 00.0    | 0.0.0    | 00.0       | 00.0   |       |            |      | 90.0  | 00.0    | 00.0   | 00.0 | 00.0   | 00.0  | 00.0   | 00.0    | 00.0  | ŭ•00  | 00.0     | 00.0    | 00.0  | 00.0 | 0 0   |           | 30.0  | 00.0   | 0.00 | 30.0   | 00.0     | ၁၀• <b>၀</b> | 0 0        | 00.0  | 00.0    | 00.0   | 0.00       | 00.0        | 00.0        | 00.0                                                                             | ) (      | 200   | 20.0    | 00.0   | 0.0   | 0.00   | 00.0   | 00.0   |
| 2. DR              | 4 | 00.0      | 30.0 | 00.0- | 00.0-   | 00.0     | 00.0       | 00.0   |       |            |      | 90.0  | 00.0    | 00.0   | 00.0 | 70.0   | 00.0  | - 00.0 | 00.0    | 00.0  | 00.0  | 0        | 00.0    |       | 000  |       |           | 0000  | 00.0   | 00.0 | 30.0   | 00.0     | )<br>)       | 30         | 00.0  | 00.0    | 00.0   | 00.0       | 0.00        | 00.0        | 00.0                                                                             | 3 6      | ) C   | 000     | 00•0   | 00.0  | 00.0   | 00.0   | 00•0   |
| TABLE              | 6 | 000       | 00.0 | 00.0  | 00.0-   | ò        | -0000      | 00.0   |       |            |      | 00.0  | 00.0    | 00.0   | 00.0 | 00.0   | 00.0  | 00.0   | 0.00    | 00.0  | 0.00  | 00.0     | 00.0    |       | 00.0 | 00.0  |           | 00.0  | 0.00   | 00.0 | 00.0   | 00.0     | 00.0         |            | 00.0  | 00.0    | 00.0   | 00.0       | 00.0        | 00.0        | 00.0                                                                             | 3 6      |       | 200     | 00.0   | 00.0  | 00.0   | 00.0   | 00.0   |
| TA                 | ć | 00.0      | 20.0 | 21.0  | .30     | 97       | 69.7       |        | 7 5 7 | 1 6        |      | 7.62  | 3.03    | 3 - 47 | 3.92 | 4.39   | 4.84  | 5.40   | 2.65    | 6.47  | 7.02  | 09.7     |         |       |      | 70.0  | 7         | 1.97  | 19.7   | 3.32 | 4.01   | 1.       | 2+4          | - 4<br>- 4 | 7.59  | 6.33    | ¥.08   | 7 · 18 · 4 |             |             | 2 • 15                                                                           |          |       |         |        |       |        | 16.4   | • '    |
| >                  | • | D . 2 . 0 |      | s     | 0 • 77  | 96.0     | 1 5 5      | 7      |       |            |      | 2.01  | 2 . 1 2 | 2 • 22 | 26.3 | 2.42   | 15.5  | 2.59   | 2 · 6 b | 2175  | 2.63  | 2.90     | 7 6 7 7 |       |      | 30.6  | 3 - 2 - 2 | 3.32  | 3+38 1 | 3.43 | 3 • 47 | 3.52     | 3.56         | 1005       | 3.64  | 3.73 1  | 3.76 1 | 3.80       |             | 7 41        | 3.40 2                                                                           |          |       | 4.13 2  | 0.4    | . 62  | 4.63 7 | 4.84 7 | 4.43 9 |
| 7 1 HE             |   |           |      | 5     | .,      | •        | ٠          |        |       |            |      | . ~   | •       | .,     | •    | -      | • 3   |        | ٠,      | •     | -     | 7.       | ın ı    |       | •    |       |           |       |        | -    |        | ű.       | · ·          |            |       | •       | •      | •          | •           | •           |                                                                                  | •        | • •   | • •     |        | -     | •      | -      | •      |

TABLE 3. DRIVING STRAIGHT AHEAD ON DOUBLE SLOPE, 20 DEG DOWN, 10 DEG SIDE, AT 400 W

|        | 0000   | 14.57    | 12.55. | 24.17   | 7.79   | 15.21  | 48.45  | 7.64   | 0.37    | 2.04    | . 10.5 | 79.9    | 5.54   | 21.9        | 4.60   | 4.65    | 4.59    | 4.57  | 4455    | 4.64    | 4.53  | 4.52    | 19.6     | 7.80  | 9000   | ***     | 4:46       | *     | 7.47    |
|--------|--------|----------|--------|---------|--------|--------|--------|--------|---------|---------|--------|---------|--------|-------------|--------|---------|---------|-------|---------|---------|-------|---------|----------|-------|--------|---------|------------|-------|---------|
| 2      | 00.00  | 19.57    | 5.92   | 16.98   | 16.76  | 21.96  | 42.58  | 3.84   | 0 • 2 4 | 1 - 8 2 | 4.66   | 2.04    | 4.52   | <b>*</b> :0 | 3.87   | 3.78    | 3.75    | 3.72  |         | 3.69    | 3.67  | 3.65    | - 2064 - | 3.63  | 1      | 3:54    | 3:57       | 3.55  | 3 • 62  |
| . 52   | 0.00   | 7.42     | 2.59   | 400+    | 13.71  | 1.1.   | 4.62   | 3.72   | 3.19    | 1 - 42  | 1.13   | 2 . 1 8 | 2.68   | 2 • 7 8     | 2 • 75 | 2 - 7 1 | 2.71    | 5.75  | 20.78   | 2 . 8 2 | 2.84  | 2 . 8 9 | 2.92     | 2.94  | 2.97   | 3.00    | 3.04       | 2.07  | 3.10    |
| š      | 00.0   | 7.42     | 13.27  | ***01   | 2.30   | 0 • 33 | 10.77  | 11.80  | 5.91    | 1.64    | 1.26   | 2.49    | 3155   | 3.73        | 3.62   | 3.51    | 3.48    | 3.50  | 3.54    | 3.58    | 3.62  | 7.66    | 3.69     | 3.72  | 3.75   | 3.70    | 3.02       | 3.86  | 7.89    |
| :<br>2 | 16.10  | 21.39    | 27.38  | 94.42   | 12.73  | 12.40  | 7.85   | 17.06  | 13.44   | 96.01   | B. 92  | 6.1.9   | 7 . 49 | 6 • 65      | 5.87   | 51.5    | 4.19    | 3.95  | 3:47    | 3.01    | 2.61  | 2.28    | 1.47     | 1.67  | 45.29  | 0 • 8 • | 0.50       |       | 00.0    |
| 3      | 18.10  | 21.39    | 74.57  | 16.82   | 26.75  | 22.19  | 1.52   | 6.63   | 8 . 9 4 | 9.25    | 8.40   | 7.14    | 01.9   | 5.31        | 4.71   | 4.17    | 3.65    | 3.21  | 2.82    | 2 - 4 4 | 2.11  | 1.84    | 1.59     | 1.34  | 1.03   | 12.0    | 0.40       | 01.0  | 00.0    |
| 87     | 13.72  | 8 . 1 .  | 2.92   | 4.94    | 13.98  | 11.33  | 4.10   | 3.11   | 4.20    | 5 . 1 . | 16.4   | 4.29    | 3.77   | 3.39        | 3.12   | 2.85    | 2.57    | 2.32  | 2.08    | 1.84    | 1.62  | ***     | 1.25     | 1.07  |        | 95.0    | 0.33       | 60.0  | 00.0    |
| <br>   | 13.72_ | 8 . 1 .1 | 14.12  | 12.04   | 2.31   | 3.60   | 9.58   | 10.01  | 7.87    | 90.9    | 10.4   | 5.24    | 4.99   | 4.56        | 4.13   | 3.71    | 3.30    | 2.96  | 2.65    | 2.33    | 2.05  | 1 • 8 2 | 1 - 5 9  | 1.36  | 1.00   | 0.74    | 64.0       | 0.12  | 00.0    |
| *      | 31.00  | 36.63    | 46.89  | 68.74   | 54.19  | 27.20  | 41.77  | 43.13  | 36.35   | 33.91   | 33.05  | 33.60   | 33.92  | 33.66       | 33.17  | 32.71   | 32.34   | 32.03 | 31.79   | 31.58   | 31.38 | 31.20   | 90.16    | 30.91 | 30.78  | 30.60   | 30.41      | 30.22 | 30.04   |
| 2      | 31.00  | 36.63    | 24.97  | 28.96   | 47.59  | 43.67  | 27.19_ | 23.87  | 27.38   | 30.47   | 30.22  | 28.71   | 27.53  | 27.03       | 26.79  | 26.61   | 26.39   | 26.13 | 25.89   | 25.66   | 25.44 | 25.24   | 25.08    | 24.92 | 24.7.7 | 24.58   | 24.37      | 24.18 | 23.99   |
| A 2    | 23.50  | 13.89    | 2.01   | 8.50    | 24587  | 22.29  | 9.67   | 8.60   | 12.86   | 16.83   | 17.66  | 17.23   | 17.00  | 17.28       | 17.74  | 18.20   | 18.56   | 99.8  | 19.10   | 19.31   | 19.52 | 19.69   | 19.84    | 19.98 | 20-12- | 20+30   | 20.49      | 20.68 | 20.84   |
| 7      | 23.50  | 13.89    | 24.18  | 20 - 70 | 0.4    | 7.89   | 22.42  | 25.45  | 22.46   | 19.84   | 20.13  | 21.51   | -22.59 | 23.08       | 23.33  | 23.54   | 23.76   | 24.03 | -24.26- | 24.49   | 24.71 | 24.91   | 25.07    | 25.22 | -25-38 | 25.57   | 25.77      | 25.97 | 26.14   |
| OMEGA  | 00.0   | 00.0     | 0.24   | 47.0    | - 6.62 | 74.0-  | - 1.03 | -0-37  | 69.0    | 1.17    | 1.03   | 1.1     | 0.00   | 1 0 0       | 29.0   | 72.0    | 9/.0    | 67.0  | 19.0    | 79.0    | 19.0  | 99.0    | 30.0     | 59.0  |        | 24.0    | 7.0        | 9.4.0 | 0.67    |
| THETA  | 00.0   | 15.35    | 10.01  | -16.00  | -10.5u | 09.9   | 16.91  | 4.0    | 2.96    | 2.34    | 46.7   | 3.40    | 14.4   | 3.37        | 3.28   | 3.24    | 3 • 2 5 | 3.27  | 3030    |         | 3.36  | 3.39    | 7.7      | 3.43  | 44.4   | 3.48    | 9.50       | 3.52  | 3 • 5 * |
| H.     | 00.0   | 00.0     | 0.02   | 10.0    | -0.03  | +0.0-  | 00.0   | 50.0   | 90.0    | 01.0    | 0.12   | 51.0    | 91.0   | 0 • 22      | 0.25   | 0.29    | 0.33    | 0.37  | 1       | 5+0     | 05.0  | 9.55    | 0000     | 54.0  | 0.74   | 9.40    | - 0 - 82 - | 99.0  |         |
| . XX   | 80.0   | 70.0     | . 60.0 | 0.52    | -0+40  | 79.0   | 06.0   | 1 • 22 | 1.58    | 2.00    | 2.45   | 2.95    | 3.4    | 4.06        | 40.4   | 5 • 3   | 96.5    | 60.0  | 1       | 8 . 1   | 8.99  | 9.8     | 79.01    | 74.7  | 12.45  | 13.38   | 44.33      | 15.31 | 16.31   |
| *      | 0100   | 97.0     | -0.54  | 0.19    | 1003   | 1.26   | 954    | */     | - 1.96  | 2 - 1 7 | 2.38   | 2.58    | 2018   | 2.96        | 41.04. | 3 • 30  | 3+46    | 3.62  | -3-77   | 3 0 4 2 | 40.   | 07.4    | 4+33     | 74.4  | 4+40   | 4.72    | 4004       | ***   | - 200-5 |
| TIME   | 0.0    | 1.0      | 6.0    | C • 5   | - 0.1  | ••0    | +      |        |         | 1.7     |        | 7.7     | -      | 5.2         | 2.7    | 5.9     | -3.1    | 3.3   | 1       | 2.7     | 3.9   |         | 4.4      | 4.5   | 40.2   | • • •   | •          |       | 9.9     |

TABLE 4. DRIVING STRAIGHT AHEAD ON DOUBLE SLOPE, 10 DEG DOWN, 10 DEG SIDE, AT 400 W

| •          | _0+0U  | 50.65   | 0.      | 7/03/ | 7.0   |           | ****        | -03     | 9.4     | 2.5     | 79.8      |           | 1         |           |            |         | . 206     | 1          | 6.24      |           |         |       | 2.20       | 5 . 2     | 5.19                                       | 91.9      | 5       | 2.17  | 5 . 17  | 2+15  | 5 - 17  | 21.9    |         | •       | A .     |         | -       | -       | -       | . S. O. |
|------------|--------|---------|---------|-------|-------|-----------|-------------|---------|---------|---------|-----------|-----------|-----------|-----------|------------|---------|-----------|------------|-----------|-----------|---------|-------|------------|-----------|--------------------------------------------|-----------|---------|-------|---------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 7          | 00.0   | 20.65   | 01.     | 91.4  | 9.5   | 45,64     | - 44.27     | 24.0    | 7.6     | 7       | 7 • 9 5   | 7.4       | 761       | 9 6 6 6 7 |            |         |           |            | 4 25      | 9 0       | 77.     |       |            | 4         |                                            |           | 4 • 1 2 |       | 07.     | -01+4 | 4.09    |         |         |         | • :     |         |         | -       | 00.     | 3 . 4 . |
| 7          | 00.0   | 8 . 1 7 | 7.60    | 2.5   | 15.53 | 15.       | 7.8.        | 3.34    | 2.80    | • 0     | 1.23      | 2.86      | 4 2 2     |           | 7 . 6 7    |         | 2.4.2     |            | 2.05      |           |         |       | 3          | 3 . 1 2   | 7                                          | 3.17      | 3.20    | 3.22  | 3 . 2 4 | 3.26  | 3.28    | 3.30    | 3.32    | 3.04    | • • • • | 30.37   |         | 7       | # :     | 7 * * * |
| Ä          | 0.00   | 6 - 1 7 | 14.17   | 11.36 | 2.20  | 90        | 13.63       | 13.07   | 4.24    | # T • O | 24.1      | \$0.<br>* | 0 0       |           |            | 7       |           |            | 7.0       |           |         |       |            | 3         | 4.07                                       | 0.0       | 4.13    | 91.4  | # · ! B | 4.21  | 4.23    | 4.25    | 4 • 2 8 | 4.30    | 7 F     | 41.     | D .     |         | 7       |         |
| r<br>9     | 18.10  | 24.13   | 20.79   | 25.46 | 17.*1 | 16.07     | 84+F8-      | 21.85   | 59.4    | 12.36   | 11.67     |           | 19.01     | •         | 0 1<br>0 1 | 0 .     | 1.42      | - :<br>- : |           | 70.0      |         | 7     | 70         | 9         | 71.1                                       | 911       | 2 . 8 1 | 2.60  | 2 • 40  | 2.20  | 2.01    | 1 . 82  | 1 • 6 3 | 6.1     | ٠٠٠     | 0.94    | 69.0    |         | 0.27    | 80.0    |
| 7<br>8     | 18.10  | 22.13   | 15.13   | 18.37 | 29.31 | 25,18     | -11-61      | 0+.01   | 12.23   | 12.64   | 10.84     | 9.12      | H - 12    | 7.53      | *0.        |         |           |            |           | 70.       |         |       |            | 3 1       | !<br>• • • • • • • • • • • • • • • • • • • |           | 2 . 2 4 | 70.7  | 1.90    | 1.74  | 1.59    | ***     | 1 . 29  | 1.09    | 0.40    | 0.72    | *5.0    | 0.37    | 0.21    | 40.0    |
| 7 0        | .13.72 | 8.75    | 7.94    | 5.6   | 15.42 | 15.01     |             | 2.94    | 5.50    | 9.9     | 5.76      | 0.4       | 4.5       | 10.4      | 4.25       |         | 6.7       | 70.7       | 7.7       | 0 :       | 7 · 6 · |       | 7 . 5      | - 0       | 20.0                                       | 4 4 4 4 4 | 1.72    |       | 64.1    | 1.38  | 1.27    | •       | 1001    | 0.89    | 0.74    | 04.0    |         | 0.32    | 91.0    | 10.0    |
| <br>20     | 13.72  | 8.75    | 14.90   | 12.00 | 2+32  | 5.06      | 12.28       | 12:15   | 8 • 3 7 | 6.57    | 6 . 6 8   | . 9       | 04.9      | 9 1 2     | 9          | 5.26    |           | 0          | M .       | 0 1       | 3.77    |       | # C        |           | - 4                                        | 7007      | 2.22    | 7.0.7 | 1.93    | 1.78  | 1 • 6 3 | 1 • # 9 | 1 • 35  | 1 + 1 5 | 96.0    | 0.77    | 0.59    | 14.0    | 0.24    |         |
| *<br><     | 31.00  | 37.89   | 46.30   | 43.67 | 24.75 | 31.16     | 46.48       | 14094   | 39.05   | 34.79   | 36.10     | 37.43     | - 37.38 - | 36.48     | 35.66      | 35.19   | ***       | 34.74      | 34.54     | 34.35     | 34.15   | 77.75 | 33076      | 00.00     |                                            | 30.00     | 40.66   | 32.95 | 32.66   | 32-77 | 32.68   | 32.60   | 32.51   | 32.43   | 32.31   | 32.20   | 32.09   | 31.99   | 31.89   |         |
| 4          | 31.00  | 37.89   | 25.90   | 31.54 | 50.41 | 43.86     | - 27 - 18 - | 25.45   | 31.78   | 34.38   | 31.94     | 24.62     | 26.88     | 29.06     | 29.17      | 27.01   | 28.68     | 28.32      | 28.00     | 2/./5     | 27.82   | 77.31 | 2/-1       | 64.07     | 2010                                       | 70.07     | 76.33   | 26.20 | 26.09   | 25.99 | 25.89   | 25.79   | 25.69   | 25.59   | 25.47   | 25.34   | 25.22   | 25.11   | 25.00   |         |
| <b>4</b> 2 | 23.59  | 14.99   | 5.04    | 4.97  | 79.97 | 20.93     | 7.14-       | 7.32    | 14.29   | 18.11   | 17.04     | 15.94     | 16.04     | 16.87     | 17.63      | 18.08   | 18.34     | 18.54      | 18.76     | 18.95     | 9 - 1 5 | 10.0  |            | 0 / • / 1 |                                            |           | 20.24   | 20.35 | 20.45   | 20.54 | 20.62   | 20.71   | 20.79   | 20.88   | 20.99   | 21-11   | 21.22   | 21.32   | 21.43   |         |
| 7          | 23.50  | 14.99   | 15.52   | 20.56 | 4.07  | 9.6       | 24.46       | 26.08   | 50.65   | 18.48   | 20.68     | 22.77     | 23.46     | 23.36     | 23.31      | 23.49   | 23.41     | 24.16      | 24.48     | 24.72     | 24.94   | 41.47 | 25.35      | 55.67     | 79.67                                      | 1000      |         | 26.26 | 26.37   | 26.47 | 26.57   | 26.67   | 26.76   | 26.84   | 56.99   | 27 . 11 | 27 • 23 | 27.34   | 27.45   |         |
| OMEGA      | 00.0   | 0.00    | 0.24    | Q • 6 | 0.32  | * a . C . | -724        | 77.0.   | 16.0    | 1.00    | 79.0      | *         | - 21.0    | 46.7      | 9 T . C    | 75.0    | 75.0      | 74.0       | - 7q.ü    |           | 99.0    | 79.0  | 3 n · 0    | 0         | 79.0                                       | 50.0      |         | 74.0  | 300     | 79.6  | 0.70    | 12.0    | 72.0    | 6.13    | 0.74    | 4/ • 0  | 6.15    | 9/.0    | 0.78    | •       |
| THETA      | 27.0   | 10.07   | h! * 6  | 1.81. | 45.6  | 16.20     | 98471       | 5 • 7 5 | 76.1    | 2042    | 3.60      | 3.70      | 36.4      | 70.5      | 5.64       | 3.05    | 3.13      | 7.10       | 3.23      | 3.26      | 3.24    | 7.7   | 26.5       | 55.5      | 20 m                                       | 0 :       | 1 1     | 4 . 4 | 3.40    | 3.50  | 3.51    | 3.53    | 3.55    | 3.50    | 3.57    | 45.6    | 3.60    | 3 • 6 2 | 3.63    |         |
| I.         | 00.00  | 00.0    | C • 0 2 | 00.0  | 60.0  | .0.03     | 2003        | 90.0    | 90.0    | 60.0    | 0.11      | 6.14      | -21.0     | 0 • 1 9   | 0.22       | 0.25    | 0.26      | C+31       | - 50.0    | 0.38      | 6.42    |       | 0 .<br>0 . |           | - 6.0-                                     | 9 9       |         | 0.77  | 0.83    | 0.88  | 0.93    | 96.0    | *0.     | 01:-    | 1.15    | 15.21   | 1 . 2 7 | 1.33    | 1 . 39  |         |
| £          | 00.0   | C - 0.2 | 90.0    | 61.3  | 46.0  | C+52      | 141.0       | 10.1    | 1.32    | 1.66    | 40.7      | 2.46      | -1.6.2    | 3.39      | 3.89       | 7 7 . 7 | 36.5      | 30.0       | - 6 1 6 - | 6.83      | 7 • 4 9 |       | 0 · B 7    | ,         | - # C • O T -                              | 0 :       | 70.1    | 3.48  | 4.31    | 5.1   | 10.01   | 16.90   | 17.79   | 18.70   | 19.63   | 20.54   | 21.51   | 24.48   | 23.45   |         |
| !<br>      | 010    | 0.72    | 94.0    | 0.66  |       | +0.1      | 420         | * * *   | 7       | 1.82    | 3.00      | 2 . 1 7   | 20.00     | 7 2       | 2.62       | 5.15    | 44.2      | 3.01       | 4         | F /4 • 15 | 3.34    | 7     | 3.57       | 3 . 6     | •                                          | 7 : ·     |         |       | 20      | 3     |         | *       |         | 6.5.4   | 40.4    | 413     | 4.60    | 4 1 8 6 | 4 - 4 2 | 1       |
| 7 THE:     | 9      | -       | 0.3     | 6.5   | -0.7- |           |             |         | 9 4 1   | 1.7     | - 1 . 9 . | 1 . 2     | 7         | 5.5       | 2.7        | 2.9     | - 1 - 5 - | 3.3        | 1         | 3.7       | •       | ÷     | 4.3        |           | * :                                        | •         |         |       | 5 . 7   | 9     |         |         | 9       | 6.7     | • • •   | 7.      |         | 7.5     | 7.7     |         |

| 0.0       | - 7       | 0.00           | • •       | 16.41 | 33.0<br>0 0<br>0 0 | 15.36    | 23.50     | 0.4     | <b>⊸</b> 39  | 13.72<br>8.97 | 13.72      | - n    | 18.10         | 0.4      | 38         | 21.02   | 21.05 |
|-----------|-----------|----------------|-----------|-------|--------------------|----------|-----------|---------|--------------|---------------|------------|--------|---------------|----------|------------|---------|-------|
|           | 75.0      | 20.0           | -0.0      |       | 7 4                | •        | •         | 2 . 4   |              | - :           | •          | ? ?    | <b>&gt;</b> 3 | •        | • •        | •       | •     |
|           | 79.0      | 0.27           | -0.02     |       | : -                | ? -      | • •       | 51 - 15 |              | • •           | •          |        |               | 7:5      | 16.33      |         |       |
| 0.0       | 0.6       | -0.42          | 10.03     |       | 7                  | 6 . B    | •         | 9.9     | 9.6          |               | 4          |        | 7             | •        | -          | 9       |       |
| - :       | 9         | 0 . 0          | 0.0       | 90 3  |                    | •        | •         | 26.59   | • •          | 88.           | •          | 13.43  | 28.82         | • •      | <b>3</b> 4 |         | 2     |
|           |           | - 0 - 0        |           |       | : :                | - ທ      |           | ;       |              | ` :           | ? :        |        | •             | •        |            | *       | •     |
| 1.7       | 1047.     | 1.33           | 0.07      | -     | ū                  | 9.0      | •         |         | 0.8          |               | •          |        | 15.56         | 7        |            | •       | •     |
| •:        | 1.62      | •              | 0.10      | _     | 0                  | 2.5      | •         | 9.0     | 9.0          | ٠.            | ₹.         | •      | 16.10         | ۲,       | ٠.         | •       | w.    |
|           | 1         | 1.02           | 0.13      |       | 9                  | -        | •         |         | 0:           | •             | <b>-</b> : | ٠.     | 7,            | ٠,       | •          | 7       |       |
| 2 . 3     | ***       | •              | -         | •     | *                  | 2 .      | •         | = '     |              | œ.            | •          |        | 7             | A (      | 9 (        | •       | ٠.    |
|           | 2 - 1     | 7/17           |           |       | • 1                |          |           | •       | • •          |               | •          | . 4    |               | : :      | 4 1        | ? :     | - ^   |
|           | 2 - 2 - 2 | · s            | . ~       |       |                    | 2 . 9    |           | ? ~     | ~            |               |            |        |               | ŝ        |            | 5.25    | *     |
| 7.1       | 2.31      | 10:            | •         |       | 7                  | 3.3      |           | 9.8     | 7            | •             |            | ď      | •             | •        | 3          | •       |       |
| 4         | 20.40     | •              | ~         | •     | 77.0               | 3.5      | •         | •       | 6.9          | 04.40         | •          | •      | à             | •        |            | 4       | •     |
| •         | 5 . 4 4   | 4.97           | •         | •     | Ť                  | 3.7      | •         | 5       | 6.5          | -             | S          | •      | *             | 9        | •          |         | •     |
| 3.7       | 2.58      | 7. 4.<br>20.00 | 0.32      | 30 m  | 04.0               | 23.87    | •         | 29.36   | 36.33        | D • • 9       | 40.4       | 7 . 24 |               | 9 6 6    | 2.90       | 4.67    |       |
| •         | • • •     | 5              | ٠         | •     | •                  | •        | •         | •       | -            | •             | •          | ,      | •             | •        |            | ٠.      |       |
| ٠.        |           |                | ••        | . •   | ••                 | ••       | ••        | • •     | ••           | ••            | ••         | ••     | • •           |          | ••         | ••      | • •   |
| _ f • • 1 | 7         | 12.68          | . 0 • 7 6 | 45.5  | •                  | 5.6      | ~         | 7.      | 34.7         |               | 2 • 40     | 4.13   | ~             |          |            | 4 . 55  | •     |
| •         | 3.45      | 13.36          | 0.80      | •     | •                  | ŝ        |           |         | 34.6         | •             | 2.80       | 3.95   | • ·           | ē,       | 7          | •       | •     |
|           | 4.        | * .            |           | 9 4   | •                  | •        | v.        | •       | 4 .          | <u> </u>      | 2.4.0      | 7.6    | 9 4           |          |            |         | • •   |
| •         | 10.0      |                |           | F 4   | •                  | 'n       | •         | : .     |              | ř             | 7017       |        | : :           | 7        | 7          |         |       |
| 7:-       | 3.60      | : -            | 86.0      |       | 79.0               | <b>-</b> |           | 27.10   | 3 5          |               | 2 • 47     | 2.39   |               | 4.38     | 7.5        | 4.52    | 5.74  |
| 7.3       | 19.6.     | 16.88          | 1.03      | 3.67  | ٠                  | ;        |           |         | 34.3         | -             | 2 • 40     | 3.28   | 4::+          | •        | •          | 4 . 5 2 | •     |
| 7.5       | 3.68      | •              | 1.07      | 3.69  | 9                  | . 2      | ٠.        | •       | 34.2         | 0             | 2 • 33     | 3.16   | •             | *        | 3.34       | ŝ       | •     |
|           | 3.72      | •              | 1 - 12    | 3.76  | :                  | ;        | •         | ٠       | 34.2         | •             | 2.27       | 300    | 30 1          | *        | •          | ş.      | •     |
| 6.        | 3.76      | 0.6            | 71.       | 3.71  | •                  | ۳.<br>•  | •         | 26.82   | 7            | 2.91          | 2.20       | 5 6 6  | •             | * 1      | •          | n .     | 'n    |
|           |           | 70.05          |           | 72.6  |                    | 76.67    | 0.0       |         |              | • `           | 2.06       | 2.76   |               |          | • •        |         |       |
| 9         |           | 21.38          | 1 • 32    | 3.74  | •                  | 6.5      |           |         | 33.          | •             | 2002       | 2.67   | •             | S        | 3.41       | *       |       |
| 9.7       | 3.90      | 22 • 15        | 1.37      | 3.75  | 0.10               | •        | 20.19     | •       | 33.4         | ŝ             | 96.1       | 7.58   | ~             | ÷        | *          | •       | •     |
| 6 . 6     | 3.93      | 2.9            | 1 • 42    | 3.75  | `                  | 9.9      | 0 • 2     | •       | 33.9         | ŝ             | 0.0        | 5 . 49 | 3.18          |          | •          | *       | •     |
| - 6       | 3 . 46    | 23.72          | - +2      | ~ 1   | ٠.                 | •        | 0.2       | •       | 33.6         | *             |            | 2.41   | ••            | ů.       | •          |         | •     |
| 3         | 7 6 7     | п ~            | 76.1      | •     | •                  |          | 20.13     | 70.46   |              | 20.30         |            | - 6133 |               | 9        | 7          |         |       |
|           | •         | 26012          | ٠.        | `     | `                  | •        | •         | 7       |              | 7             |            | 2 • 20 |               | , vi     |            | . 4     | •     |
|           | 30 4      | 6.9            | •         | •     | ~                  | 6.9      |           | •       | ٠.           | 7             | 1.67       | 2,14   | 1             | Ġ        | 3.48       | 4.47    | ś     |
| 1001      | :         | 27.75          |           |       | 0 • 7 3            |          |           | 7       | ÷            | _             | 1.63       | 2.09   | •             | -        | 3.49       | 4 • 4 7 | 9     |
| 0.0       | 7 :       | ت.<br>د        | ~ (       | •     | •                  | •        | ٠,        | 7       | •            | :             | un i       | 2.04   | •             | •        | 3.50       | A       | •     |
| 9         | 4 0       | 2,4            | 500       |       | ` '                | 9        | 20.52     | 20.18   | 3.6          | • :           |            |        |               |          | 44         |         | •     |
|           | 4.21      | 31.07          |           |       | •                  | -        |           |         |              | 46.           |            |        |               |          | 3.52       |         |       |
| =         | 4.24      | 31.92          | 2002      |       | 0.74               | 27.13    | 20.61     | 26.08   | 3.5          | •             |            |        | 7             | •        | 3.53       |         | •     |
| •         | 4.24      | 17.74          |           | •     |                    |          |           |         |              |               |            | :      | 3             |          |            | :       |       |
| 11HE      | >         | ¥              | £,        | THETA | OMEGA              | ₹        | <b>A2</b> | 7       | <del>*</del> | =             | 7 0        | 2      | <b>r</b>      | ñ        | 70         | 7       | •     |
| 27.4      | 5.00      | ::::           | 8 - 25    | .0.   |                    | 28.39    | 21.67     | 24.80   | 32.48        | 0.03          | 0.02       | 0.02   | 0.03          | <b>9</b> | 3.62       | 4.37    | 2:1   |
|           |           |                |           |       |                    |          |           |         |              |               |            | ,      |               |          |            |         |       |

TABLE 6. DRIVING STRAIGHT AHEAD ON DOUBLE SLOPE, 10 DEG UP, 10 DEG SIDE, AT 400 W

| , | 0.00  | 20.65   | 10.0  | 19.22  | 15.30 | 27.69 | 19.93    | 80.0   | 17.91 | 20.81   | * *       | 3.42   | 6.38  | 10.61 | 40.0    | 4.13    | ;;    | 5.94   | 6.53  | 0.40  | 4.12    | 10.9   | *0.4  | ÷.09   | 71.9       | 6.12  | <b>•••</b>     | 01.4  | 0:•     | 01.4    | <b>*</b> 0 4 | <b>6009</b> | •          | 600                                            | •0••  | •0    | ¥0.0  | • 0    | •0•   | • 0 •   | •                 | 40.0     | 9110  |
|---|-------|---------|-------|--------|-------|-------|----------|--------|-------|---------|-----------|--------|-------|-------|---------|---------|-------|--------|-------|-------|---------|--------|-------|--------|------------|-------|----------------|-------|---------|---------|--------------|-------------|------------|------------------------------------------------|-------|-------|-------|--------|-------|---------|-------------------|----------|-------|
| ; | 00.0  | 20.45   | 3.70  | 10.96  | 33.55 | 20.28 | 45.9     | 7.52   | 21.16 | 15.43   | 2.40      | 2.40   | 05.4  | 4.46  | 6.12    | 3.74    | 3.96  | 5.02   | 5.41  | 2.19  | 4.93    | 4.85   |       |        | ***        |       | 4.91           | 06.4  | 4.90    |         | 4.04         |             | •          | 4.87                                           |       |       | •     | 50.    | 9     | 9:      | =                 |          | 41.78 |
| ; | 00.0  | 9.17    | 2.45  | 04.8   | 15.80 | 5.94  | 2.19     | 5 • 28 | 3.14  | •••     | 2.92      | 2.74   | 0.63  | 1.55  | 2 • 8 5 | 3.04    | 2.58  | 2.28   | 4,39  | 2.61  | 2.71    | 2.71   | 7.69  | 2.71   | 2.74       | 2.77  | 2.74           | 7.87  | 2.83    | 2 . 8 5 | 2.86         | 2.88        | 7.00       | 2.91                                           | 2.43  | 7.0   | 2.7   | 2.97   | 2.78  | 2.49    | 9.00              | 3        | 30.24 |
| ; | 00.0  | 9.17    | 10.51 |        | 2.60  | 12.12 | 18.62    | 5.20   | 2.28  | 3.31    | 6.31      | 4.30   | 29.0  | 1.94  | 4.62    | 4.80    | 3.41  | 3.03   | 3.26  | 3.65  | 3.80    | 3.77   | 3.72  | 3.73   | 3.77       | 3.81  | 5              | 3.87  | 3.89    | 1.6.5   | 3.93         | 3 . 95      | 3.97       | <b>*</b> • • • • • • • • • • • • • • • • • • • |       | 4.02  | r :   | 4.05   | 4.07  |         | • 0 •             |          | 40.39 |
|   | 18.10 | 22.13   | 26.79 | 22.57  | 15.26 | 25.54 | 29.78    | 21.20  | 19.69 | 22.88   | 23.49     | 19.73  | 16.23 | 16.19 | 14.50   | 15.83   | 14.76 | 14.00  | 13.59 | 13.25 | 12.86   | 12.43  | 12.06 | 11.75  | 11.48      | 11.22 | 10.97          | 10.73 | 10.51   | 10.29   | 10.09        | 9.90        | 1.4        | 9.0                                            | 4.37  | 4.22  | 40.4  | 9 . 9  | # (C  | 8.72    | - C               | 2        | 4.21  |
|   | 18.10 | 22.13   | 15.13 | 21.35  | 29.82 | 16.34 | 14.05    | 57.49  | 22.42 | 17.03   | 14.10     | 15.39  | 14.50 | ****  | 12.52   | 12.04   | 12.03 | 11.77  | 11.26 | 10.75 | 10.34   | 10.02  | 9.16  | 15.6   | 4.27       | *0.6  | 6.83           | 6.63  | 7       | 6:26    | 60:0         | 7.92        | 7.77       | 7.62                                           | 4.    | 7.36  | 7.25  | 7:     | *0.   |         | 50.4              | •        | 9.87  |
|   | 13.72 | 8.75    | 2.94  | 8 . 39 | 14.75 | 5.77  | 2.07     | 9.46   | 9.43  | 5 • 4 2 | 40.4      | 6.23   | 7.12  | 40.0  | 5.59    | 5 . 6 1 | 5.89  | 26.5   | 5.74  | 5.54  | . 4     | 5.33   | 5.28  | 5 • 20 | 21.9       | 5.05  | 4.97           | 4.90  | # # F   | 4.77    | 7.7          | 4.67        |            |                                                |       |       | ) ·   | 4 . 35 | 9     | 4 . 26  | 4.22              | <u>.</u> | 3.30  |
|   | 13.72 | 8 • 7 5 | 14.90 | 9.46   | 3.09  | 12.07 | 15.77    | 8.31   | 7.17  | 11.23   | 12.16     | 9.66   | 7.67  | 8.37  | 40.6    | 8 • 8 2 | 8.24  | 7.89   | 7.80  | 7.74  | 7 • 6 0 | 7 - 43 | 7.28  | 7.16   | 7 • 0 5    | 56.9  | 6 - 85         | 6.74  | 6 . 6 5 | 9 - 55  | 9 * • 9      | 6.37        | 4.29       | 6 - 2 1                                        |       | 90.9  | 00.4  | 10.5   | 9.00  | 5.82    | 5.76              | 7        |       |
|   | 31.00 | 37.89   | 49.30 | 38.65  | 26.20 | 43.78 | 00 • 1 5 | 36.44  | 36.52 | 44.06   | 45.17     | +0.0+  | 36.17 | 38.40 | 39.43   | 39.25   | 37.99 | 37.47  | 37.54 | 37.62 | 37.50   | 37.28  | 37.08 | 36.95  | 36.86      | 36.78 | 36.69          | 36.60 | 36.51   | 36.43   | 36 • 35      | 36.28       | 36+21      | 47.90                                          | 36.08 | 36.02 | 35.96 | 35.91  | 35.86 | 35.82   | 35.78             | */•47    | 14.81 |
|   | 31.00 | 37.89   | 25.90 | 36.56  | 10.64 | 31.42 | 24.19    | 38.74  | 38,59 | 30.40   | 28.45     | 32,83  | 35.76 | 32.66 | 30.35   | 30.46   | 31.29 | 31.38  | 30.92 | 30.47 | 30.25   | 30.15  | 30.04 | 29.91  | 29.78      | 29.65 | 29.53          | 29.43 | 29.33   | 29.24   | 29.15        | 29.06       | 28.98      | 26.90                                          | 20.02 | 28.75 | 28.69 | 26.63  | 28.57 | 28.52   | 28.46             | 7.02     | 27.32 |
|   | 23.50 | 14.99   | 5.04  | 14.36  | 75.26 | 99.4  | 3.56     | 16.30  | 16.23 | 4.67    | 8.75      | 13.29  | 16.73 | *8.*. | 13.55   | 9 7 • 7 | 15.31 | 15.79  | 15.75 | 15.71 | 15.83   | 16.05  | 16.24 | 16.37  | 16.46      | 16.55 | 16.64          | 16.73 | 16.82   | 16.90   | 16.96        | 17.05       | 17.13      | 17.19                                          | 17.26 | 17.32 | 15.7  | 17.42  | 17.47 | 17.52   | 17.54             | 0./-     | 18.52 |
|   | 23.50 | 46.41   | 25.51 | 61.91  | 5.30  | 20.67 | 10.72    | 14.28  | 14.42 | 21.63   | 23.39     | 19.60  | 17.09 | 19.86 | 21.93   | 78.17   | 21.17 | 71.17  | 21.55 | 21.96 | 22.18   | 22.28  | 22.40 | 75.52  | 22.66      | 22.79 | 22.90          | 23.00 | 23.10   | 23.19   | 23.28        | 23.37       | 23.45      | 23.53                                          | 73.60 | 23.67 | 23.74 | 23.80  | 23.85 | 23.91   | 23.96             | 10.17    | 95.09 |
|   | 00.0  | 00.0    | 17.0  | 65.0   | 79.0- | -1165 | -0.75    | 10.0   | 45.0  | -0.82   | B > · O - | #£,.0- | +7.0- | 99.0- | 04.0-   | +1.0-   | -0.53 | ****   | 44.0  | -0.00 | 45.0-   | 95.0-  | -0.54 | -0.53  | 64.0-      | -0.53 | 79.0-          | 14.0- | -0.51   | 05.0-   | -0.50        | 64.0-       | \$ t . O . | 9 ·                                            |       | 7.0-  | /+ 0  | /5.0-  | 97.0  | 94.0-   | 4 .<br>7 .<br>0 . | 4.0      | 7     |
|   | 00.0  | 16.07   | 6.75  | -16.00 | 70.5  | 20.50 | 8.82     | 7.03   | 6.67  | 7.38    | 3.25      | 9/.0   | 1.76  | 3.16  | 2.96    | 2.27    | 2.03  | 61.7   | 2.38  | 4.43  | 7.4.7   | 4.39   | 0.40  | 2.43   | 2 • 45     | 4.47  | 9 · · ?        | 5.45  | 2.50    | 75.7    | 7.53         | 45.2        | 55.7       | 46.7                                           | /4.7  | 95.7  | ×     | 7.60   | 1907  | 7.62    | 2.62              | 50.7     | 2.77  |
|   | 00.0  | 00.0    | 0.01  | 00.0   | 00.0- | 0.02  | 0.05     | 0.07   | 90.0  | 01.0    | -         | -      | -     | 51.0  | -       | -       | 61.0  | 7      | ?     | ?     | 7       | ?      | 0.58  | 0.30   | 0.32       | 0.34  | 0 • 3 6        | 0.37  | 0.34    | ***     | 44.0         | 91.0        | # (O       | 0.0                                            | 75.0  | 5     | 10.0  | 45.0   |       | * 9 • 0 | •                 | •        | 4 .   |
|   | 0.00  | 10.0    | 90.0  | 0.12   | 12.0  | 0.31  | * * * 0  | 95.0   |       | 0.94    | 1 . 1 6   | 0,     | 1.66  | +6.1  | 47.7    | 55.7    | 7.88  | 3 . 23 | ď     | 3.95  | ~       | `.     | -     | •      | •          | 6.39  | <b>7</b> 9 ⋅ 3 | 1.51  | 7.73    | 7       | ٠            | 7           | 9.         | 01.01                                          | 00.01 | 40.11 | 00.1  | 17.11  | •     | -       | 99.01             |          | 79.87 |
|   | 0.10  | 71.0    |       |        | •     | 0.58  | ٠        | 97.0   | 0.92  | 1.04    | 1 • 1 5   | 47.1   | 1.35  | 1.45  | 1.53    | 1001    |       | -4175  |       | 1.67  | 6.4.    | 1.99   | 5.04  | 4.0.2  | 4.13       | 2.17  | 70.7           | 7.70  | 7       | •       | :            | 7.40        | 7.43       | 2.46                                           | 2.18  | 7.5   | 7.54  | 7.56   | 2.58  | •       | 2 . 6 3           | •        | 2010  |
|   | 0.0   |         | 0 • 3 | 5.0    | ٠٠٧   | 617   | =        | 1.3    |       | 1.7     | ••        | 7.17   | 7.3   | 5.5   | 2.7     | 6.7     | -:    | 7:7    | 3.5   | •     | •••     |        | ;     | •.     | <b>.</b> : | •     |                | 5.3   |         | 2 . 5   | 5.0          | -           | ~          |                                                | ٠.    |       | = ;   | 7.3    | 7.5   | 7.7     | 7.0               |          | 20.0  |

|                     | 9     | ŝ      | •     | . 65    |       |        | ~      | •       |              | •       | •     | •       | •       | •          | •       | •      |       | •     | •     | ю.     | ٠<br>-  |             | -     | 7.      |       | 90.   | 11.     |       | 1       | 9       | **    | ::  | 4       | *       | . 45  |         | T       | 7 1   |         |      |          | 5     |      |         | 5    | •    | - 45  | =     |     | <u>.</u> |   |
|---------------------|-------|--------|-------|---------|-------|--------|--------|---------|--------------|---------|-------|---------|---------|------------|---------|--------|-------|-------|-------|--------|---------|-------------|-------|---------|-------|-------|---------|-------|---------|---------|-------|-----|---------|---------|-------|---------|---------|-------|---------|------|----------|-------|------|---------|------|------|-------|-------|-----|----------|---|
| ×                   | 1     | -      | 7     | 7       | -     | • •    | 7      | 7       | -            | 7       | •     | -       | =       |            |         | 7      |       | 4 3   |       |        |         | 9           | n -   | • •     |       | •     | 9       | •     | •       | •       | •     |     | •       | •       | •     | •       | •       |       | • •     |      | •        | •     | 7    | •       | •    | :    | 1     | •     |     | -        |   |
| 400                 | 0.00  | ÷      | ÷     | 37      | - 4   |        | -      | e i     | •            |         | 5+32  | 17 . 87 | 7 • 7   | 7:         |         | 72.6   |       |       |       | •      |         | - '         |       |         |       | -     | 5 . 1   |       | 5 . 2 . |         |       | •   | 2.5     | -       | 2.16  | -       | 2       | ٠.    | -       | •    |          | 5 . 1 |      |         |      |      | 7 7 8 | =     |     | ŝ        |   |
| E, AT               | •     | •      |       | 10.22   | •     | •      | •      | 'n      | 2 • 60       | •       | -     | 99.0    | •       | -          | •       | •      | 7.7   | 00.7  | ? '   |        | 9       | •           | ***   | 2 . 2 5 | 7     | 7.44  |         |       | 7       | 2 - 46  | •     | ::  | 2 • 5 1 | •       | 2.52  | _2.53_  | 2.53    |       | 66.7    |      | 7 2 2 5  |       | 4    | 2 . 5 7 |      | •    | 7.64  | 7.64  |     | 25       |   |
| GSIDE               | 00.0  | 7 • 42 | 15.32 | 7.52    | 14.47 | 5      | 2.09   | 3.13    | 7.57         | 6.73    | 78.0  | •       | :       | ~          | •       | ŗ      |       |       | ? '   | 2.30   | :•      | ο,          | 700   | 3000    | 3.45  | 3.57  | 4       | 3.50  | 3.51    | 3 • 5 5 | 3.58  | •   | •       |         | •     | 3.64    | 3.65    |       |         |      |          | 7.6   | 44.6 | 3.70    | 1.70 |      | 3.70  | 3.78  | :   | <u>=</u> | : |
| 10 DEG              | 18.10 | ~      | •     | 20.00   | • •   | :      | ٠.     | 4       | 5.7          | ₹.      | 19.35 | :       | 3       | 24.49      | 19.6    | 19.96  | 21.10 | 20.00 |       | •      | A 6     | •           | •     |         | 7     | 16.13 | 3       |       | ₹.      | 15.30   | 15.18 | ::  | 14.67   |         | 2     | 14.42   | 14.35   | 14.27 | 77.61   |      | 01.1     | 000   | 3000 | 13.6    | 4    | •    | 13.14 | 13.14 |     | -        |   |
| , UP,               | 18.10 |        | 4 . 5 | 21.96   | ? ?   |        | •      | 7       | •            | 16.44   | 52.43 | •       | 16.84   | 16.57      |         | 40.    | 15.65 | .:    | 0.    | 19.61  | 99.47   | 01.4.1      |       | 9 4     | 1 ~   | 12.97 | 40      | . •   | 12.46   | ~       |       | •   | 7.      |         | 59.11 | -11.58  | 11.52   |       |         | 2 .  | 7        | 11.22 |      | *       |      | :    | 10.4  | •     |     | 63       |   |
| 20 DEG              | 13.72 | -      | •     | ~       | • •   | 9      | 9      | -       | ٠.           | •       | 9.85  | •       | •       | •          | -       | •      | 0 ·   | •     | •     | •      | 6.12    | •           | •     | 9       | •     | •     |         | 0     | •       | •       |       | ::  |         | •       | •     | 5 . 6 4 | 5 . 6 3 | •     | 9       | •    |          | 5.56  |      |         |      | •    | •     | 5.37  |     | 79       | : |
| •                   | •     | :      | -     | 7.67    | •     | 9 5    | 9      | 10.89   | 12.71        | •       | 7.16  | 9.29    | 11.99   | 1 : 54     | 8.27    | 11.6   | 10.41 | ,     | 9 . 4 |        | 9.22    | 9 - 29      | •     |         |       |       | 9       |       | 3       |         | 8.37  |     |         |         | •     |         | 8.1.    | 9.09  | 20.0    | •    | 60.9     |       |      | ***     |      |      | 7.69  | 7.69  |     | <u>.</u> | : |
| E SLOPE             | 31.00 | ÷      | 9     | 34.25   | 2000  |        | 30.73  | •       | •            | 43.54   | 33.27 | 37.47   | 42.75   | 58 • 1 *   | 35.90   | 34.15  | 40.50 | 37.72 | 16.16 | •      | 8 • 2   | <b>70</b> 1 | 37.7  | • •     |       | 37.30 |         | 37.04 | •       | 36.94   | 5     | •   |         | •       | 9 . 9 | 34.64   | 36.61   | •     | 36.57   | 9    | •        | 10.05 |      |         |      |      | 34.19 | : =   |     | * <      |   |
| DOUBLE              | 31.00 | ÷      | *     | 37.60   | 20.00 | 27.09  | 71.1   | 31.24   | 27.69        | 28.26   | 36.54 | 34.32   | 20.62   | 29.90      | 35.53   | 32.78  | 29.87 | 30.23 | 34.30 | 31.41  | 30.61   | 30.24       | 30.56 | 10.00   | 90.00 | 30.06 | 10.01   | 29.98 | 29.88   | 29.78   | 24.72 | •   |         | 30.48   | •     | -       | 29.39   |       | •       | •    | 7.2      | 27.20 |      | 29.22   | ٠.   | •    | :05   | 28.87 | 1   | ç        | • |
| ON                  | 23,50 | 13.89  | 10.9  | 90.91   | 40.4  | , p. 9 | 19.15  | ē       | *            | 7.94    | •     | 13.26   | ٠       | 8.45       | 14.64   | `      | •     |       | 'n.   | ď      | •       | `           | 7     | 70.7    |       | •     |         | 13.93 | 13.90   |         |       |     |         | 47.4    | 7     |         | 14.36   | ~     | *       | •    | •        |       |      | 7       |      | À    | 1     | 14.7  |     | A 2      |   |
| AHEAD               | v     | •      | •     | 13.13   | •     |        | . 0    |         | 3            | -21.31  | 12.31 | •       | •       | •          | 14.97   | 7      | •     | •     | •     | 18,28  | 19.43   | 19.78       | 17.50 | 97.0    | 3 3 3 | 20.01 | 20.05   | ? :   | 20.20   | 20.30   | 20.35 | •   |         | 20.50   | 20.67 | 20.66   | 70.68   | ~     | •       | 70.7 | <b>~</b> | 20.61 |      | 20.02   | •    | •    |       | 21.19 |     | 7        | : |
| <b>TRAIGHT A</b>    | 00.0  | •      | 47.C  | 0.23    | 24.04 | •      |        | •       | •            | 0.61    | •     | 97.0    | -0.10   | 0.30       | 9.0     | •      | •     | -     | •     | , r. 0 | 91.0    |             | ٠     | •       |       |       | •       | 0.28  |         | 0.27    | •     | :   |         | . 7 . 0 |       |         | 67.0    | 00    | ~       | •    | 7        | •     | 3 1  |         | •    | ?    | •     | ~     |     | OMEGA    |   |
| Ń                   | 0     | 15.35  | 9 . 6 | 6.9     | 7.4.2 |        | 5.84   | ****    | <b>6.2</b> 0 | U . 7 4 | 1.56  | B .     | 01.9    | 2.6.5      | 2 • 8() |        |       | 2.7   | 19.7  | 2) T   | 3 · 6 · |             | 3.20  |         | 7     | 7.00  |         | 3.4.6 | ***     | 4.4     | 7     | •   |         | e 3     | 7     | . 50    |         | 3.50  | 3.51    | 15.7 | 3 • 5 1  | 757   |      | 70.0    |      | 70.7 | 1.5   | 3.56  |     | THETA    | • |
| DRIVING             | 0.00  | 0.00   | 0.0   | 10.0    |       |        | 50.0   | 70.0    | 0.0          | 0110    | 01.0  | 0 • 1 1 | 0 • 1 3 | <b>,</b> 0 | 91.0    | 0.17   |       | 0.50  | 7.0   | 0.22   | 0.24    | 0.26        | 0.27  | 0.70    | 200   | 0.33  | 4.0     | 75.0  | 7       | . 0     | •     | ::  |         | 76.0    |       |         | 0.00    | •     | * 9 • 0 | •    | •        | 0770  | •    | ,,,     | ) (  | :    |       | 9000  | :   | EX.      |   |
| 7. D                | 0.00  | 0      | 0     | 60.0    | 7     | 67.0   | 0 . 38 | 97.0    | 65.0         | 12:0-   | 56.0  | 1 • 00  | 1.17    | + ?        | 65.1    | -1:73- | *     | 2.17  | 0     | •      | 59.7    | 9 - 6       | 7     | 800     | , ,   | 4.52  | 4 . 8 2 |       | 5.41    | . 7 . 5 | 0.03  | •   | • -     | n o     | 7     | 200     | -       | ~     | •       | 70   | ~        | ug a  |      | 7       | 0    |      | •     |       | • ; | ¥        | : |
| TABLE               | 01 tu | •      | 0.40  | 0 • 2 5 |       | •      | 3      | 0       |              | - 1     |       | - 67.0  | 64.0    | 10.0       | D • 0   |        | 70.1  |       |       | 1.23   | 1.51    | *           |       | 7 7     |       |       |         | •     | ٠       |         | ٠     | • • |         | •       |       | •       | 60.1    | 99.1  | 1.67    |      | 24.      | 4 :   |      | × ,     |      |      |       | 28.1  |     | >        | : |
| $\mathbf{T}_{\ell}$ | 0.0   | •      | 6.0   | 5.0     |       |        |        | - 5 • 1 | 1 • 7        | +       | 2 • 1 | ٠       | 5 • 5   | •          | 5.9     | •      | •     | 9 .   | •     |        | -<br>-  | ٠           | .n. 1 | • •     |       |       | 4.5     | 5.7   |         |         |       | •   | • •     | F .     | 7.7   |         |         | 6.3   | •       | •    |          | •     | •    |         |      |      |       | • •   | 1   | 7 1 ME   |   |

TABLE 8. BRAKING WHILE COASTING STRAIGHT AHEAD ON DOUBLE SLOPE, 10 DEG DOWN, 10 DEG SIDE

| 55    | 00.0 00. | 9        | .39 1.45         | 13 2     | ~<br>-       | 7.1       | *<br>= | 25           | *       | -       | *                                       | S .   | 9     |          |         |                                         |       |         | *     | 700  | •       |       |        | 24.72 | 3.08 4.76 | 70.4 01. | -      |              | ~ :      | 71.   |       |       |        | -     | -                                       |       |          |       |          |          |       |       |
|-------|----------|----------|------------------|----------|--------------|-----------|--------|--------------|---------|---------|-----------------------------------------|-------|-------|----------|---------|-----------------------------------------|-------|---------|-------|------|---------|-------|--------|-------|-----------|----------|--------|--------------|----------|-------|-------|-------|--------|-------|-----------------------------------------|-------|----------|-------|----------|----------|-------|-------|
| 28    | 0.00     |          | -                | ~        | . 04.        | • 02 2    | . 16   | 1            | ~       | •0•     | .22                                     | .32   | ,     |          |         | •                                       |       |         |       | - 57 | •       |       |        |       |           |          | 2      | 7            |          |       |       |       | -      | 16.   | 0                                       | 0     | 04.      | 0     |          | ) (      |       |       |
| 3     | 00.0     | •        |                  | 3.11     | 4.05         | 4.67      | 5 • 20 | <b>5</b> • • | ••03    | 10.4    | 4.53                                    |       |       |          |         | 7.03                                    | 40.   |         | 7     | 7.21 | 7 . 2 4 | 7.27  | 7 . 20 | 7.20  | 7.30      | 7.33     | 7.37   | 7 . 34       | * 4      |       | 7     | 7     | 7 - 43 | 7.43  | 7.43                                    |       | 7.42     | 7.43  |          |          |       |       |
| -     | - 10     | -8.61    | -0.72            | -9.29    | ٠            | -4.0      | -      | -            | 7       |         | 9:0                                     | •     | •     | 0 1 1    | •       | -                                       |       |         | 17071 |      |         |       |        | -     | -12.5     | -12.6    |        | 12.4         | •        | 7     | 77.   | 4.2.4 | 7      | •     |                                         | •     | 7        | -     | 7        | •        | 12.00 |       |
| 2     | •        | -1:6     | -8.54            | -:-      | •            | • 7 • 6 6 | -7.51  | •            | •       | •       | -7.2                                    | -7.2  | 7:    | 7.       | •       | , ,                                     |       |         |       |      |         |       |        | -     | -8-14     | -8:13    | •      | :            | -        | 0     |       |       |        | 01.4  | :                                       | :     | =        | =     | •        | =        |       |       |
| 9.5   | 0 -12-00 | 4 -12.54 | 5 -12.32         | 9 -12.02 | 8 -i 1 · 7 8 | 1 -11.59  | =      |              |         | 2 - 11: | ======================================= | ::-   | _     | 2 -111.7 | 7 - 7   |                                         | 7     |         |       |      |         |       |        | •     | + -15.4   | 1-15.4   | 1.81.  | - 15         | <u>•</u> | •     |       |       | 151- 8 | -     | 91- 8                                   | - 12  | <u>.</u> | -12.  |          | -        |       |       |
| 8     | •        | Š        | -12.6            | •        | -13.2        | -13.5     | -13.6  | 13.0         | _       | •       | ٠                                       | ₹.    | -     | 1.5      |         | -                                       | - 1   |         |       |      |         |       |        | . ~   | 2.        | _        | 2      | 2            | 6        | •     |       | •     | :      |       | •                                       | •     | -14:3    | •     | -        | •        | 6.1   | -     |
| *     | 25.00    | 21.50    | 22.23            | 23.12    | 23.88        | 34.48     | 24.82  | 25.12        | 25.36   | •       | 25.62                                   | •     | •     | •        |         |                                         | •     | 00.67   |       | •    | •       | 70 66 | •      | •     |           | 24.01    | •      | •            | ÷        | 24.07 |       | • •   |        | 24.07 | •                                       | •     | ÷        | •     | •        | •        | 24.07 | /0.17 |
| 43    | 25.00    | 21.50    | 21.20            | 20.37    | 19.59        | 19.00     | •      | 18.29        | 18.03   | 17.83   | 17.63                                   | •     | 17.33 | ~        | ٠       | •                                       |       | ***     | 10.4  |      | , 2, 2  |       |        |       | 15.51     | *        | 15.47  | •            | *        |       |       |       |        | *     | 15.43                                   | *     | •        | •     | 15.43    | 6.43     | 2.4   | 7     |
| A 2   | 0        |          | 30.71            | 29.93    | 29.27        | 28.77     | 28.45  | 28+19        | 27.98   | •       | Š                                       | `     | ~     | 27.79    | •       | 10.07                                   |       |         | 90.07 |      | 71 7    |       |        |       | •         | 7.       | 7.     | 29.37        |          |       | 20.34 |       |        | •     | 7                                       | ?     | •        |       | ~        | •        | 7     | 27.38 |
| . v   | 30.00    | 31.37    | 31.54            | 32.33    | 33.02        | 33.54     | 33.88  | 34.16        | •       | •       | 34.75                                   | 34.90 | 15.03 | 75.14    | 07 - 47 | 5 to 0 to |       |         | 40.4c |      | •       |       | 96.0   | 36.82 | •         | 36.85    | •      | •            | 36.90    | •     | 34.0  | •     | 36.95  | 36.91 | 36.91                                   | 36.91 | 36.91    | 36.91 | 36.92    | •        |       |       |
| OMEGA | 00.0     | 00.0     | 10.0-            | +0.0-    | 11.0-        | -0.20     | -0.30  | .0.3         | .0.     | 99.0.   | 0.00                                    | 59.0- | 99.0- | -        |         | 7/0-                                    | 7/00- | 7.0     | 24    | •    |         | 700   |        | 39.0  | -0.59     | -0.60    | •      | 0.0.         | 19.0-    | 19.0  | 10.0  |       |        | 10.0- | 79.0-                                   | -0.62 | -0.62    | -0.62 | -0.62    | •        | -0.62 | 79:0. |
| THETA | 00.0     | 0.34     | 1.05             | 7.7      | 7.04         | 2.34      | 7.56   | 2.72         | 2.83    | 2.90    | 2.94                                    | 2.96  | 2.97  | 2.96     | × • 7 × | 7 · 7                                   |       | Z • 7 · | 10.0  |      | 7 . 00  |       | 50.0   | 7.04  | -         | 3.12     | * •    | -            | _        | 96    | •     | • •   | 97.7   | _     | -                                       | 3.15  | 31.5     | 3018  | 3 - 1 5  | 3        | ***   | -     |
| ×     | 00.0     | 00.0     | -<br>-<br>-<br>- | 0.03     | 0.0          | •0•0      | 0.13   | 91.0         | 0.50    | 42.0    | 0.50                                    | 0.32  | 0.35  | 0.3      |         |                                         |       | 70.0    |       |      | 3 4 5 0 |       |        | . 7   | 9.4       | 0.79     | -<br>• | 0.83         | 0 • 0    | 20.0  |       |       |        | 96.0  | 0.17                                    | 0.9   | •••      | 90:   | <u>:</u> | ē:       | 1.02  | 70.   |
| I >   | •        | ***      | 1.32             | 2.17     | 3.02         |           | •      | 5.46         | 6 . 2 5 | 7.05    | 7.78                                    | 75.0  | ~     | •        | •       |                                         | •     | • •     | 13.87 |      |         |       | 1      | 'n    | 0         | Š        | 17.96  | 7            | 7        | -:    | 7     |       | ? ?    | •     | ÷                                       | 9     | _        | :     | •        | :        | 21.77 | :     |
| >     | *        | 4.10     | 4.33             | 4.24     | * *          | 4.12      | +0.    | 3.97         | •       | •       | ٠                                       | :     | •     | •        | •       |                                         |       | -       |       |      | -       | . 1   |        |       | 7         | N        | -      | 0            |          | •     |       |       |        | 1022  | ======================================= | •     | •        | -     | ě        | ä        | *     | ?     |
| TIME  | 0.0      | •        | :                | •        | ٠            | •         | •      |              | 5 -     |         | •                                       | •     | 2,3   | •        | •       | •                                       | = ;   | •       | •     | !    | •       |       |        |       | *         |          | 5.5    | <b>5 · 5</b> | 2.1      | •     |       |       |        | •     | 7.1                                     | 7:3   | 7.5      | 7.7   | 7.9      | <u>:</u> |       | •     |

TABLE 9. BRAKING WHILE COASTING ON HORIZONTAL PLANE WITH 10 DEG SIDE SLOPE

|       | 00.0  | •     | 1.50  | 2.62    | 3.32    | 3.9     | 4,37     | 9173    |       | 9:19  | 5.23   | 6.23      | -       | 91.9  | * g    | 9:10  | 6 - 6 | 5 . 22 | 9 - 5 | 5.2/  | 5 . 2 8 | 5.29  | 5.29  | 5 . 20 | <b>9 · 5 0</b> | 6.20  | 6.27  | 5 . 20 | 17:4    |
|-------|-------|-------|-------|---------|---------|---------|----------|---------|-------|-------|--------|-----------|---------|-------|--------|-------|-------|--------|-------|-------|---------|-------|-------|--------|----------------|-------|-------|--------|---------|
| 3     | 00.0  | ***   | ***   | 2 + 2 2 | 2 . 7 % | 3+03    | 3.24     | 31.40   | 3.48  | 3.50  | 2.40   | 3.4       | 3.32    | 3.20  | 3 • 23 | 3.24  | 3.24  | 3.24   | 3.27  | 3.29  | 3.30    | 3.30  | 3.29  | 3+24   | 3.27           | 3.27  | 3.24  | 3.29   | 3.27    |
| 25    | 00.0  | 0.71  | 2.00  | 3.00    | 3.74    | 4.20    | 1.4.     | 4.97    | 97.9  | 19.9  | 5.72   | 5.72      | •00•    | 4.20  | 4.25   | 6.25  | 4.25  | 4.24   |       | ,7.,  | ••30    |       | 16.4  | 6.31   | 10.4           | 6.31  |       | 16.9   |         |
| 2     | 00.0  | 0.71  | 2.06  | 3.24    | 4.22    | 4.90    | 05.5     | 40.0    | ****  |       | 7.20   | 7.48      | 7.71    | 7.86  | 7.93   | 7.94  | 7.94  | 7.96   | 7.48  | 10.0  | 6.03    | *0.   | \$0·# | 40.    | \$0.0          | 90.0  | •0.   | *0.    | *0.     |
| *     | 00.01 | .0.78 | .4.07 | ****    | 18.4.   | 11.0    | ++*01-   | 17.0    | •     | 11.54 | 12.19  | 17.64     | 12.88   | 2.97  | 2.92   | 2.93  | 2.93  | 2.94   | 2.75  | 2.95  | 2.96    | 2.97  | 2.17  | 2.17   | 2.97           | 2.97  | 2.77  | 2.97   | 2.17    |
| 63    | 10.00 |       |       |         |         |         | -7.76    |         |       |       |        |           |         |       |        |       |       |        |       |       |         |       |       |        |                |       |       |        | - 00:0- |
| 8.8   | •     |       |       |         |         |         | -11.96   |         |       | ,     |        |           |         |       |        | -     |       |        |       |       | Ī       | •     | -     | Ť      | -              |       | Ī     |        | 15.82   |
| -     |       |       |       |         |         |         | .14.29 - |         |       |       |        |           |         |       |        |       |       |        |       |       |         |       |       |        |                |       |       |        | 19.79   |
| *     | •     | •     |       | •       | •       | •       | •        | Ĭ       | •     | ۰     | •      | •         | •       | •     | •      | •     | •     | ٠      | •     | •     | •       | •     | •     | •      | ٠              | •     | •     | •      | . 07.19 |
| : 24  | 25.00 | 21.93 | 21.59 | 20.64   | 19.61   | 19.18   | 18.72    | 18.26   | 17.84 | 17.38 | 14.91  | 14.91     | 15.95   | 15.64 | 15.49  | 15.47 | 15.46 | 15.45  | 15.44 | 15.42 | 14.41   | 15.40 | 15.39 | 16.34  | 15.39          | 15.39 | 15.39 | 15.40  | 15.40   |
| 7     | 30.00 | 31.74 | 31.16 | 30.37   | 29.68   | 29.17   | 20.05    | 28.66   | 28.55 | 28.60 | 28.72  | 29.03     | 29.33   | 29.54 | 29.43  | 29.62 | 29.61 | 29.60  | 29.59 | 29.58 | 29.54   | 29.56 | 29.55 | 29.55  | 29.58          | 39.55 | 27.55 | 27.55  | 29.55   |
| ٧1    | 30.00 | 31.74 | 32.02 | 32.15   | 33.54   | 34.13   | 34.54    | 34.96   | 35+35 | 35.74 | 36.20  | 36.71     | 37 - 16 | 37.46 | 37.61  | 37.63 | 37.64 | 37.65  | 37.66 | 37.67 | 37.48   | 37.69 | 37.70 | 37.70  | 37.70          | 37.70 | 37.69 | 37.69  | 37.69   |
| OMEGA | 00.0  | 00.0  | 10.0- | *0.0    | 77.0.   | -0.20   | -0.31    | 0.40    | 34.0- | 55.0- | 09.0-  | F 9 . 0 . | +9.0.   | +0.0. | -0.63  | 79.0- | -0.62 | -0.62  | -0.42 | 29.0. | -0.03   | E9.0- | .0.0  | -0.63  | .0.63          |       | -0.63 | .0.63  | -0.63   |
| THETA | 00.0  | 0.37  | 70.1  | 7.0     | 2 • 1 1 | 2 . 4 4 | 2.70     | 2 . 8 9 | 3.03  | 3012  | 3.19   | 3.23      | 3 • 27  | 3.30  | 3.32   | 3.34  | 3.36  | 3.38   | 3.34  | 3.40  | 3.41    | 3.41  | 3.41  | 3.4.0  | 7              | 74.0  | 3.40  | 3.40   | 3.4     |
| ×     | 00.0  | 00.0  | 10.0  | 0.03    | •0•0    | 0.0     | 0 • 12   | 91.0    | 0.50  | 0.23  | 0.27   | 0.30      | 0.34    | 0.37  | 00     | 0.43  | 0.45  |        | 0.0   | 0.52  | 15.0    | 99.0  | 0.57  | 95.0   | 000            | 04.0  | 14.0  | 29.0   | 29.0    |
| ¥,    | 00.0  | ***0  | 1.30  | 2 . 1 4 | 2 . 9 5 | 3.73    | ***      | 5.22    | 2.45  | 0000  | 7 • 25 | 7.87      | 8 • 45  | 10.4  | 9.53   | 10.02 | 10.47 | 40.01  | 11.20 | 11.63 | 11.75   | 12.23 | 12.48 | 12.70  | 12.88          | 13.03 | 13.14 | 13.22  | 13.26   |
| >     |       |       | !     |         |         |         |          | -       |       |       |        |           |         |       |        |       |       |        |       |       |         |       |       |        |                | _     |       |        | 11.0    |
| TIME  | 0.0   | -     | 0.3   | \$ .0   | 0.1     | ••0     |          |         |       | 1.7   | •      | 7.1       | 2.3     | 2 • 5 | 2.7    | 5.4   | 3.1   | 3.3    | 3 • 5 | 3.7   | • • •   | ;     | 4:3   | 4.5    | 4.7            | •:    | -:    |        | -       |

#### STEERING EFFECTS

# Front-Wheel Steering Failure on Horizontal Plane (Driving at 400 W, Fig. 10)

The vehicle is in straight-ahead motion at  $v_0 = 2.22 \text{ m/s}$  (8 km/hr).

At t = 0.3 s, failure of an electronic component in the steering circuit causes the front wheels to go into a hard-over position to the right within 3 s, beginning at t = 0.3 s. Full hard-over position is reached at t = 3.5 s and remains unchanged for the remainder of the motion.

No countermeasures are taken by the astronaut; the drive system remains under power at 400 W.

The vehicle goes into right turn of decreasing turn radius with  $R_{m}^{}=0.66~m$  reached at t=8.7~s.

The vehicle's speed decreases continuously because of the skidding resistance (up to 50-deg yaw angle at t=7.5 s).

 $v_{min} = 0.91 \text{ m/s} \text{ at } t = 8.7 \text{ s.}$ 

Maximum side load on wheel is  $S_3 = 35 \text{ kg}$  (77 lb) at 9.5 s.

Table 10 gives numerical values of the front-wheel steering failure.



Figure 10. Front-wheel steering failure on horizontal plane, (driving at 400 W).

# Front-Wheel Steering Failure on Horizontal Plane with Countersteering at t = 2.1 s (Driving at 400 W, Fig. 11)

The vehicle is in straight-ahead motion at  $v_0 = 2.22 \text{ m/s}$  (8 km/hr).

At t = 0.3 s, failure of an electronic component in the steering circuit causes the front wheels to move into a hard-over position to the right within 3 s. Full hard-over position of the front wheels is reached at t = 3.5 s and remains unchanged for the remainder of the motion.

It is assumed that at  $t=2.1\,\mathrm{s}$  (when the vehicle axis deviates by 15 deg from the initial straight-ahead course), the astronaut initiates a left-turn correction and increases to full hard-over condition of the rear wheels by  $t=4.9\,\mathrm{s}$ . All wheels remain in their extreme positions for the remainder of the motion. Drive system remains under power at 400 W.

Countersteering moment produced by the rear wheels is insufficient to bring the vehicle back to the original straight course, it can only keep the vehicle from going into a tight turn as shown in Figure 10. The corridor width is increased from 10.0 to 11.7 m. At t = 10 s, the vehicle would begin to follow an almost straight path, opposite the original direction.

If brakes had been applied and power reduced to "zero" at t = 2.1 s (v = 11 km/hr), the vehicle would have come to rest after 3.8 s (at t = 5.9 s) and a distance of 6 m (values taken from Fig. 8).

Table 11 presents numerical values of this case.



Figure 11. Front-wheel steering failure on horizontal plane with countersteering (driving at 400 W).

# Front-Wheel Steering Failure on Sloping Terrain (Driving at 400 W, Fig. 12)

The vehicle is in straight-ahead motion (in Y-direction) at  $v_0 = 2.22$  m/s (8 km/hr). At t = 0.3 s, failure of an electronic component in the steering circuit causes the front wheels to go into a hard-over position to the right within 3 s, beginning at t = 0.3 s, reaching full hard-over position at t = 3.5 s, and remaining unchanged for the remainder of the motion.

No countermeasures are taken by the astronaut; the drive system remains under power at  $400\ W_{\star}$ 

Downslope and side slope add an additional displacement to the motion in the two directions and cause the vehicle to skid at larger angles for greater parts of the motion. Brake application after t=5 s apparently would be ineffective, since the vehicle has turned almost 90 deg to the path and moves primarily in a lateral direction. After turning more than 90 deg, application of power to the drive system might be more effective in bringing the vehicle to a stop.

Brake application at a time as early as t=2.5 or 3.0 s appears to be the proper response to this type of steering failure, especially on a downhill slope. The failure occurring on a horizontal plane seems to be the least critical with respect to brake application and space required to bring the vehicle to a stop.

Maximum side load on wheels (cornering forces)  $S_3$  ranged from 35.5 to 37.2 kg depending on degree of slope.

Tables 12 through 15 present numerical values of this front-wheel steering failure on sloping terrain (driving at  $400~\mathrm{W}$ ).



Figure 12. Front-wheel steering failure on slopes (driving at 400 W).

# Front-Wheel Steering Failure on Sloping Terrain with Countersteering (Driving at 400 W, Fig. 13)

The vehicle is in straight-ahead motion (in Y-direction) at  $v_0 = 2.22$  m/s (8 km/hr). At t = 0.3 s, failure of an electronic component in the steering circuit causes the front wheels to go into a hard-over position to the right within 3 s, beginning at t = 0.3 s, reaching full hard-over position at t = 3.5 s, and remaining unchanged for the remainder of the motion.

It is assumed that at time t=2.1 s (when the vehicle axis deviates by 15 deg from the initial straight-ahead direction), the astronaut initiates a left-turn correction and increases to full hard-over condition of the rear wheels by t=4.9 s. All wheels remain in their extreme positions for the remainder of the motion. The drive system remains under power at 400 W.

When comparing Figure 13 with Figure 12, it will be immediately apparent that countersteering would not alleviate the situation in any way. In case of the forward-sloping terrain, there is hardly any effect noticeable between the cases with and without countersteering, while actually more room will be required in both directions in case of the side-sloping terrain. Thus, countersteering by itself does not appear to be a proper response to steering failure in sloping terrain.

It should be noted that the vehicle remains at smaller yaw angles over longer periods of time, which lets brake application appear to be more effective, especially in the case of side slopes and to some lesser degree also in case of the forward-sloping terrain.

Maximum wheel side loads (S<sub>3</sub>) range from 30.8 to 34.9 kg.

Tables 16 through 19 present the numerical values pertaining to this case of front-wheel steering failure on sloping terrain with countersteering (driving at  $400~\mathrm{W}$ ).



Figure 13. Front-wheel steering failure on slopes with countersteering (driving at 400 W).

### Rear-Wheel Steering Failure While Coasting (Fig. 14)

The failure of an electric component in the steering circuit may also cause the rear wheels to move into a hard-over position.

The vehicle is assumed to be in a straight-ahead motion at  $v_0=4.44$  m/s (16 km/hr) at time t=0. At this time, the hand-controller is set to "neutral" (no power to drive motors). The vehicle will then coast, subjected only to the decelerating forces from the rolling resistance, back-drive torque of the drive system and some brake application at a speed of about 12 km/hr. Presently, these forces are not well known. These force coefficients were assumed to represent this particular condition:  $\mu=0.20$  at v=0;  $\mu=0.23$  at v=4 km/hr;  $\mu=0.32$  at v=8 km/hr, and  $\mu=0.465$  at v=11.6 km/hr. At speeds higher than 11.6 km/hr, the coefficient  $\mu=0.465$  will drop to a value of 0.40. (Values are shown as dashed curve in Fig. 3.)

Figure 14 shows that the vehicle would continue to move straight ahead, coming to a stop after 6.9 s and a distance of 13.2 m, with a sideways displacement of 1.6 m. The vehicle would have rotated at this point about its vertical axis by an angle of slightly more than 90 deg.

Maximum wheel side load is 30 kg.



Figure 14. Rear-wheel steering failure while coasting.

# Four-Wheel Steering Failure (Fig. 15)

Although a four-wheel steering failure has a low probability of occurring, it has been assumed to happen as a matter of interest.

The vehicle is assumed to be in a straight-ahead motion at time t=0. At this instant, the hand-controller is set to "neutral"; the vehicle will then coast and be subjected only to the decelerating forces from rolling resistance, back-drive torque of the drive system, and some brake application. Presently, these forces are not well known. They have been assumed to be presented by these force coefficients:  $\mu=0.20$  at v=0,  $\mu=0.23$  at v=4 km/hr,  $\mu=0.32$  at v=8 km/hr, and  $\mu=0.465$  at v=16 km/hr. At speeds higher than 11.6 km/hr, the coefficient  $\mu$  will drop to a value of 0.40. (Values are shown as dashed curve in Fig. 3.)

Two initial velocities were considered:  $v_0 = 16 \text{ km/hr}$  and  $v_0 = 16 \text{ km/hr}$ .

Front and rear wheels would begin to move into their hard-over position at time t = 0.3; they would reach the end position time t = 3.5 s. The vehicle would coast to a stop at these values:

|                              | $v_0 = 16 \text{ km/hr}$ | $v_0 = 8 \text{ km/hr}$ |
|------------------------------|--------------------------|-------------------------|
| Distance (Y m)               | 11.7                     | 4.8                     |
| Time (s)                     | 5.1                      | 4.3                     |
| Sideways displacement (m)    | 1.3                      | 0.7                     |
| Maximum wheel side load (kg) | 23.5                     | 12.3                    |



Figure 15. Four-wheel steering failure while coasting.

# Four- and Two-Wheel Steering (Figs. 16 through 18)

Motion of the LRV in turns is characterized by the relatively large yaw angle that the vehicle will make with the tangent to the path or course.

To illustrate the reduction in yaw angle when two-wheel steering would be used, the following steering program was applied to the two cases:

| from | $\mathbf{t} = 0$ | to 1.9 s                | vehicle is on straight-ahead course                                                                    |
|------|------------------|-------------------------|--------------------------------------------------------------------------------------------------------|
|      | t = 1.9          | $\theta$ to $t = 2.9 s$ | wheels move into right turn from 0 deg to 10.5 and 15 deg, for outside and inside wheels, respectively |
|      | t = 2.9          | 9  to  t = 3.9  s       | "HOLD" - wheels remain in right-turn position                                                          |
|      | t = 3.9          | 9 to $t = 4.9 s$        | wheels return to neutral                                                                               |
|      | t = 4.9          | 9 to $t = 5.9 s$        | wheel moves into left turn from 0 deg to 10.5 and 15 deg, for outside and inside, respectively         |
|      | t = 5.9          | 9 to $t = 6.9 s$        | "HOLD" — wheels remain in left-turn position                                                           |
|      | t = 6.9          | 9 to $t = 7.9 s$        | wheels return to neutral.                                                                              |

Figures 16 and 18 show the large yaw angle under four-wheel steering up to 12 deg (for 200 W) and 23 deg (for 400 W), whereas the two-wheel steering requires only 3 deg (under 200 W) and 8 deg (under 400 W).

In case of two-wheel steering, the vehicle would remain aligned much closer with the course (or tangent to the path).



Figure 16. Driving at 200 W with two- and four-wheel steering programs.



Figure 17. Driving at 400 W with two-wheel steering program.



Figure 18. Driving at 400 W with four-wheel steering program.

ONT WHERE STREETING FAILTIRE ON HORIZONTAL, PLANE (DRIVING AT 400 W)

|        |           | <u> </u> | INCIA   | OMEGA   | ₹       | t<br>E |           |         | i<br>:      | 3:       | 2           |         | ;<br>; | ;     | ;<br>;  | 1        |
|--------|-----------|----------|---------|---------|---------|--------|-----------|---------|-------------|----------|-------------|---------|--------|-------|---------|----------|
| -      |           |          |         | 00.0    | 24.00   | 24.00  | 31.00     | 31.00   | 7 - 15      | 7.15     | 9.23        | 9.23    | 0.00   | 0.00  | 00.0    | 0        |
| 0.1 2. | 1.27 0.22 | 0.0      | 00.0    | 00.0    | 20.45   | 0      | 34.05     | 34.05   | 5.04        | \$ 0 0 1 | 0.0         | 9.40    | 000    | 000   | 00.0    | 0        |
|        | - 1       | - 1      |         | 00.0    | 19.02   | 20.61  | 33.89     | 33.09   | 5.70        | 0.4      |             |         | 200    |       |         |          |
| •      |           |          |         | 00.0    | 20.85   | 20.85  | 37.65     | 33.05   |             |          | 44.         |         | •      |       | 0 . 2 6 | 0        |
|        |           |          | ;       | 50.0    | 20.32   | 21.86  | 15.36     | 30.84   |             | 25.5     | 300         | 7.55    |        | 10.   | 1.34    | =        |
| •      |           |          |         | 21.0    | 7       | 24.58  | 36.07     | 29.51   |             | 5.41     | 7.88        |         | 7.28   | 7.11  | 3.45    | -        |
|        | 1         |          | 2.81    | 2.47    | 18.07   | 26.01  | 37.00     | 27.92   | 4.39        | 5.32     | 7.51        | ***     | 0.0    | 9.25  | 2.7     |          |
|        |           |          | 400     | 7.4     | 17.36   | 27.41  | 37.87     | -       | 4.22        | 5 . 23   | 7.15        | 6 . 20  |        | 9.65  |         |          |
| 1      | 1         |          | 6.30    | 7.86    | 16.68   | 28.79  | 38.68     | 24.85   | 4.09        | 5 . 1 9  | <b>6.87</b> | 5.79    | 01.6   | 44.01 | •       | •        |
|        |           |          | 8.5     | ***     | 16.04   | 30.05  | 39.44     | 23.45   | 10.         | 91.9     | 6.62        | 5.43    | 9      | 12.35 | 12.34   |          |
|        | 1         |          | 10.98   | 13.24   | 15.50   | 31.22  | 40.12     | 22 • 15 | 3.48        | 5 . 15   | •           | - · · · |        | 7 6 7 | 70.5    |          |
| •      |           |          | 13.71   | 17.04   | 14.99   | 32.33  | *0.7      | 20.93   | 10.4        | 8-1-6    | 6.22        | 7904    |        | 0000  |         |          |
|        |           |          | 79.9    | 21.20   | 14.55   | 33.34  | 41.30     | 19.82   | 4.09        | 9 . 5    | 90.         |         |        |       | 20.13   |          |
| İ      | ł         |          | 19.76   | 25.70   | 14.13   | 34.24  | 90        | 10.02   | <u>*•23</u> |          |             | 100     |        | 8 6   | 21.72   |          |
| ••     |           |          | 23.08   | 19.00   | 13.78   | 35.02  | #2.24     | 17.94   | - I         |          |             | 7       | -      | 20.10 | 21.02   |          |
|        |           |          | 15.92   | 35140   | ****    | 35.71  | 42.66     | 17.19   | •           | -        |             |         | 20     | 22.30 | 24.36   | •        |
| •      |           |          | 30.13   | 0.0     | 13.14   | 36.27  |           | /6 .    |             | - 1      |             |         | . 47   | 23.32 | 25.58   | 9        |
| 1      |           |          | 33.86   | 46.55   | 12.61   | 36.62  |           |         |             |          |             |         | 8 . 75 | 23.94 | 26.76   | 2        |
|        |           |          | 37.70   | 52.38   | 15.51   | 37.27  |           | •       | 70.0        |          | 7 . 7       |         | ***    | 24.48 | 27 . 85 | •        |
| 1      | ٦         | ì        | 41.67   | 58.43   | 12.08   | 37.50  | 7         | 10.1    |             | -        | 7117        | 95.3    | •      | 24.88 | 20.86   | •        |
| •      | _         |          | 11.54   |         |         |        |           | ***     |             | 8 12     | 7.62        | 4.56    | 7 . 85 | 25.24 | 29.78   | •        |
|        |           |          | 00.08   | 71017   | 11.41   | 37.81  | 5 7 5 7   | 14.75   | 40.4        |          | 8 13        | 4.77    | 7.55   | 15.57 | 30.63   | <u>.</u> |
| •      | _         |          | 48.84   | 84 52   | 10.34   |        |           | 14.72   | ••          | 4.17     | 8.70        | 50.5    | 7.25   | 25.76 | 31.38   | •        |
|        | -         |          | 1       | 91.45   | 4.97    | 37.75  | 46.51     | 14.76   | 5 • 8 0     | 9.71     | 4.37        | 5.34    |        | 25.90 | 32.02   | <u>.</u> |
|        |           |          | 68.28   | 98.55   | 9.62    | 37.64  | 44.88     | 14.85   | 19.9        | 10.30    | 01.01       | 5.76    |        | 20.00 | 32.04   | •        |
|        |           |          |         | 105.80  | 4.24    | 37.51  | 47.28     | 14.97   |             |          | 10.0        |         | 4.22   | 40.46 | 33.34   |          |
|        |           |          | 78.31   | 113.20  |         | 37.32  | 47.65     | 51.51   |             |          | 7 2 5 4 7   |         | 2.97   | 25.95 | 33.61   | 0        |
|        | _         |          | 83.40   | 120.74  | 6.53    | 37.07  |           | A7      |             | 2.5.5    | 3.5         | 8 - 1 2 | 5.72   | 25.75 | 33.84   | 0        |
| !      | _         |          | 84.10   | 128.49  | 9-17    | 36.78  | 10.01     | 7000    |             | 70.71    |             |         | 4      | 25.52 | 34.13   | -        |
| •      | _         |          | ***     | 136.37  | 7.00    | 34.46  |           | 15.44   |             |          |             | *       | 9.19   | 25.29 | 34.40   | =        |
|        | ī         | 1        | 1000.87 | A       | 0.0     | 30012  |           | 75.01   | 70.0        | 3.96     | 16.29       | 4.67    | 76.4   | 25.08 | 34.65   | Ė        |
|        | _         |          | 22./01  | 152.80  |         | 20.00  | . 0 . 7 7 | 16.41   | 3.47        | 4.33     | 17.29       | 9.82    | 4,75   | 24.84 | 34.84   | =        |
| ,      |           |          | 7.00    | 80 00 7 | * 4     | 35.35  | 50.02     | 17.08   | 3 • 8 2     | 14.61    | 18.23       | 9.98    | 4.58   | 24.44 | 35.02   | Ė        |
|        |           |          | 128.65  | 177.87  | 6.32    | 35.09  | 50 • 23   | 17.35   | 3.69        | 14.85    | 19.08       | 10.13   | 4.4    | 23.95 | 35.16   | - 2      |
|        |           |          | 136.83  | 184.40  | ****    | 34.83  | 50.41     | 17.61   | 3.59        | 15.03    | 19.83       | 10.2%   | 4.30   | 23.27 | 35.28   | · :      |
|        |           |          |         | 195.48  | • • •   | 34.55  | 50.53     | 17.91   | 3.51        | 15.08    | 20.47       | 10.4    | 4.21   | 27.27 | 75.47   | •        |
| ì      |           | !        | 155.34  | 204.49  | 5.94    | 34.23  | 50.58     | 18.25   | 3 . 47      | 10.51    | 20.97       | 99.0    | ~ ;    | 19.02 | 0000    | •        |
|        |           |          | 10.441  | 213.59  | 5.94    | 33.68  | 50.52     | 18.81   | 3.48        | 7        | 21.45       | 00.1    | ) -    |       | 16.35   |          |
|        |           |          |         | 222.59  | 5.97    | 31.43  | 50.34     | 21.25   | ****        | -        | 21.41       | 12.41   |        |       | 36.28   |          |
| _      |           |          | 191.22  | 231.13  | 5.88    | 30.87  | 50.40     | 21.85   | ***         |          | 22.46       | 12.10   |        | 11.5  | 15.17   |          |
| . –    |           |          |         | 238.96  | 5 . 8 2 | 30.67  | 50.45     | 22.04   | 3.40        |          |             | 2 4 5   |        | 12.1  | 35.30   |          |
|        | ļ         | •        | ~       | 246.02  | 9 . 9   | 30.77  | 50.4      | 21.75   | 30.42       |          | 22.60       | 7.7     | 72.2   | 4     | 34.06   | ٤        |
|        |           |          | ~       | 252.38  | \$0.4   | 11.15  | 7.06      | 00017   | 7           |          | 21.6        | 7.1     | 2.04   | 4.57  | 31.35   | -        |
|        |           |          | 251.75  | 256.13  | •       | 70.05  |           | 10.77   |             |          | 20.69       | 4.0     | 3.66   | 3.67  | 26.56   | 2        |
|        |           |          | 200.407 | 203036  |         | 20.72  | 7.11      | 2000    |             | 11.2     | 19.37       | *1.4    | 4.7    | -     | 14:1    | =        |
| •      |           |          | /7.0/7  | 222017  | *****   | 26.92  |           | 26.41   |             |          | 17.64       | 7       | 7.18   | 0.4   | 10.70   |          |
|        |           |          |         | 9746    | 3.6     | 25.29  | 41.74     | 26.17   | 4.52        | A:78     |             | 14.62   | 40.4   | -     |         |          |
|        | 1         |          |         |         |         |        |           |         |             |          |             |         |        |       |         |          |

400 W, HORIZONTAL S 25 S FRONT-WHEEL STEERING FAILURE WITH COUNTERSTEERING, -9 <u>=</u> 4.07 ₹ 103.23 107.90 112.54 117.15 OMEGA 21.72 THETA × TABLE 11. > TIME

| į., | TABLE 12. | 12.      | FRONT   | 1         | WHEEL ST | STEERING FAILURE                        | G FAI | LURE       | NO    | 7.5 DEG | G SIDE   | E SLOPE   | _       | DRIVING | AT    | 400 W   | _ :   |
|-----|-----------|----------|---------|-----------|----------|-----------------------------------------|-------|------------|-------|---------|----------|-----------|---------|---------|-------|---------|-------|
|     | >         | =        | ×       | THETA     | OMEGA    | 4                                       | A 2   | ç          | *     | <br>    | 78       | 3         | ÷       | ž       | 25    | 3       | *     |
| •   |           | . '      | . ;     | <b>;</b>  |          |                                         | 24.00 | 31.00      | 31.00 | 7.15    | 7.15     | 4.23      | 9.23    | 00.0    | 0.00  | 00.0    | 00.0  |
| 0.0 | 7.55      | 000      |         |           |          | 20.23                                   | 20.23 | 33.80      | 33.80 | 2.8     | 5.88     | 9.13      | 6.03    |         | 9 1   |         |       |
| • • | 2.17      | : :      |         | *         | 10.0     | 21.00                                   | 19.79 | 32.86      | 34.34 | 20.04   | 2.47     |           |         | 07.0    | 0.70  | 3.57    |       |
|     |           | 1.17     | 0.02    | 2002      | *0.0     | 22.40                                   | 18.93 | <b>~</b> : | 35.35 | 5.40    |          | 7.83      |         | *       | 2.44  | 3.43    | 3.05  |
| •   | 'n.       | . • .    | • 0     | 2.32      | 91.0     | 22.41                                   | 6.7   | 33.73      |       | 5.25    | . 4 2    | ***       |         | . 20.5  | 3.40  | 2.43    | 2.54  |
| ••0 | 2.63      | 2.19     | 0.0     | 2.90      | 25.0     | 21.31                                   | 10.12 |            | 77.16 | 9       | 4.82     | 7.28      | 7.66    | 6.33    | 4,33  | 0.35    | 0.35  |
| -   | •         | 2.72     | - :     | 3.40      |          | 10.72                                   | 23.11 | 74.4       | 29.93 | 4.74    | 4.74     | 6.93      | 7.16    | 7.34    | 5.38  | 2.34    | 2.25  |
| ?   | ~ •       | 75.5     |         | 40.7      | 40.4     | 10.71                                   | 25.49 | 35.80      | 28.04 | 4.47    | 1.4      |           | 7       | 8.20    |       |         |       |
|     | •         |          | 200     | 77        | 20.6     | 17.61                                   | 27.11 | •          | 26.26 | 4.25    | •        | 6:30      | = :     |         | ***   |         | 1000  |
| •   | •         |          |         |           | ***      | 17.13                                   | 28.48 | 37.71      | 24.74 | 4.12    | 4.62     | -         |         | 7.4     |       | . 75.   |       |
|     | •         | 5.57     | 0.53    | 14.62     | 4.59     | 16.53                                   | 29.74 | 38.45      | 23.33 | *0*     | 95.      | # (       | 7.      | •       |       | 34.5    | 40.0  |
|     |           | 4 . 1 5  | 0.70    | 17.68     | 10.64    | 15.94                                   | 31.00 | 39.15      | •     | 10.4    | <b>.</b> | 5.54      |         |         |       |         | 7     |
| 7.5 | 3.12      | •        | •       | 20.97     | 23412    | 15.47                                   | 32.14 | 4.7        | •     |         | 76.4     | 2 .       |         | 230     | 16.57 | 7 . 4 . | 9.79  |
| 2.7 | -         | 7.32     | - 15    | 24.45     | 27.93    | 15.02                                   | 33.21 | 40.32      | 14.53 |         | n -      | 7         |         | 10.21   | 16.13 | 04.4    | 4.94  |
| 2.4 | -         | 7.89     | 1.43    | 28.10     | 33.07    | 74.47                                   | _     | 40.82      | 9.0   |         |          |           | 9       | 4.47    | 19.65 | 21.02   | 0.07  |
|     | 3.21      | ***      | 1.75    | 31.80     | 38.81    | 14.24                                   | 35.00 | 41.28      | 9.7   |         |          |           | 3.82    | 4.7     | 21.06 | 22.40   | 01.0  |
| •   | 3.22      | •        | 2 • 1 1 | 35.78     | 44.22    | 13.41                                   | 35.72 | 99.17      | 9/10/ |         | 200      |           | 3.73    | 9.53    | 22.40 | 23.79   | 10.11 |
|     | ~         | ***      | 2 • 50  | 39.76     | 50 - 18  | 13.61                                   | 36.33 | *5.0       | 10.07 |         | 79.6     |           |         | 9.30    | 23.24 | 25.06   | 90.01 |
|     | 7         | 4.4      | 2.13    | 43.81     | 56.37    | 13.28                                   | 36.43 | 42.44      |       |         |          |           |         | 9.02    | 23.93 | 26.35   | 90.01 |
|     | 3 . 2 !   | 14.01    | 3.34    | 47.93     | 62.78    | 12.89                                   | ~     | 42.88      | 70.5  | 7       |          | 4         | 3.74    | 8.73    | 24.59 | 27.46   | 0:05  |
| •   | 3.20      | 10.82    | 3.88    | 52.09     | 64.38    | 12.47                                   | 37.54 |            |       |         |          | 5.7       | 3.84    | 8.42    | 25.15 | Š       | 50.01 |
| •   | 3.18      | 11.20    | *       | 56.30     | 76.15    | 12.04                                   | 27.0  |            |       |         | 7.16     | =         | 3.97    |         | 25.68 | •       | 9.0   |
| •   | 3 • 1 6   |          | •       | 60.55     |          | 90 -                                    | •     |            |       | 4.29    | 7.76     | 09.4      | 4.15    | 7.80    | 26.05 | 30.39   |       |
| •   | 3.11      | <u>:</u> | •       | ***       | 51.04    |                                         | •     |            |       | 4.20    |          | 7.17      | 4.37    | 7.47    | 26.37 | 31.17   | 6.82  |
| •   | 3.07      | 12.06    | О.      | 51.69     | • F •    |                                         | •     | 45.75      | 4 6   |         | 9.11     | 7.82      | 4.4     | 7.19    | 26.60 | 31.92   |       |
| -   | 3.02      | 12.25    |         |           | 104.01   | 74.0                                    | •     | 40.17      | 14.   | 5.76    | 9.85     | Š         | 5.05    | 7.0     | 26.54 | 32.32   |       |
| •   |           | 12.40    | 77.7    | 3 - 7 - 9 | 77.71    | 25                                      |       | 46.53      |       | 5 . 5   | 10.68    | 9.42      | 10° 10° | • •     | 26.38 | 32.57   |       |
| •   |           | 05.51    |         | *****     | 127.70   |                                         |       | 46.92      | 14.62 | 5.33    | 11.51    | ***       | 4.12    |         | 71.92 | 32.65   |       |
| •   | 2.63      | 17.5     | ,       | 40.0      | 135.71   | 8.70                                    | 37.05 | 47.36      | 14.95 | 2.08    | 12.37    | 11.56     |         |         | 75.45 | 0-055   | 7.0   |
| •1  | 7.7       | 16.7     |         | - 1 4 4   |          | 8 . 20                                  | •     | 47.84      | 15.35 | 4.74    | 13.39    | 12.85     | 7.98    |         |       |         |       |
|     | 2.58      | 12.48    | •       | ***       | 152031   | 7.63                                    | 34.18 | 48.45      | 18.81 | •       | 75.      | 20.5      |         |         | 76.95 | 34.34   | 1.43  |
| •   | 2.48      | •        | 10.40   | 103.91    | 160091   | 7.00                                    | 35.66 | 40.64      | 16.32 | • 0     |          | 100       |         | 4.52    | 24.64 | ~       | 11.72 |
| •   | 7         | ~        | 10.95   | 108.39    | 169.71   | Ŧ                                       | 35.24 | 79.67      | 16.74 | 3.77    |          | 7 / • / • |         |         | 24.34 | 35.19   | 12.03 |
|     | 7         | 12.08    | 11:30   | 112.93    | 178.73   |                                         | 34.77 | 50.27      |       |         |          | 2         | 10.01   | 3 9 6   | 24.01 | 35.62   | 12.36 |
|     | -         | •        | 11.77   | 117.55    | 10.881   | 5.23                                    | 34.29 | 90.05      |       |         | 19.62    | 24.44     | 10.00   | 2.74    | 23.66 | 36.05   | 12.70 |
| •   | •••       | 11.69    | -       | 122.24    | 197.68   | 700                                     |       |            |       | 2 . 3 5 | 19.27    | 26.97     | 10.98   | 0.31    | 23.20 | 36.46   | -     |
| 7.5 | 1.00      | 1.48     | 2.4     | 127.03    | 207.70   |                                         |       | 24.00      | •     | : -     | 18.75    | 29.51     | 11.55   | 2.03    | 22.55 | 36.73   | 13.85 |
| •   |           | 7        | 12.70   | 131.43    | 70.812   |                                         | 37.75 | 5.2.85     | : :   | •••     | 10.21    | 30.70     | 12.14   | 2.20    | •     | 37.00   | 96.6  |
| •   | **        | 90.      | 7       |           | 7.86.5   |                                         | 30.99 | 53.05      | 21.04 | 1.74    | 18.04    | 30.00     | 12.29   | 2.09    | 20.78 | 27.14   |       |
| •   | 1.23      | 9        |         | 00.34     | 250.10   | 30.0                                    | 30.78 | 52.97      | 21.27 | 1.78    | 17.94    | 30.87     |         | 2.13    | 11.67 | 37.08   |       |
|     | 10.0      |          | 7       | 47        | 240.05   | 3.99                                    | 28.75 |            | 23.51 | 2.33    | 16.74    | 30.22     | 13.73   |         | 14.47 | /7.00   | 70.41 |
|     |           |          | 13.30   | 157.74    | 271.00   | 14.9                                    | 23,37 |            | 29.44 | 3.74    | 9.6      | 28.50     | 0.7     |         |       |         | 20.13 |
|     |           | 10.2     |         | 166.32    | 279.95   | 6.23                                    | 23.07 | 10.01      | 29.76 | ***     |          | ď.        | 7       | 6.37    |       | 34.29   | 20.90 |
|     | , 6       | 10.23    | •       | 177.73    | 207-16   | 4.25                                    | 22.98 | •          | 74.6  |         |          | 7         | 7.      | -       | 15.55 | 34.26   | 20.46 |
|     | •         | 70.0     | •       | 200-17    | 292.46   | 4.27                                    | 22.90 | 94.04      | 27.7  |         |          |           | 24.95   | 10.44   | *:    | 21.38   | 29.91 |
|     |           | 10.22    | •       | -555.01   | 297.41   | 22.77                                   | 12.07 | 30.50      | 42.73 | 31.5    | 4.63     | Ō         | 23.00   | 15.77   | 10.10 | 21.69   | 27.87 |
|     | ۶         | 10.23    | •       | •         | 104.46   | 22.53                                   | 16.17 | 31.6       | 10.14 |         | 0.67     | 16.30     | 22.39   | 18.47   | 10.67 | 22.06   | 26.0  |
|     | •         | 10.22    | 2       | -1374.76  | 716:4    | 72.4                                    | 7     | 31.00      | 37.00 | 13.19   |          | 13.02     | 22.08   | 18:03   | 10.40 | 11:70   | 26.40 |
| -   |           | 10.22    | ?       | -00/761.  |          | • • • • • • • • • • • • • • • • • • • • | )     | !          |       | ,       |          |           |         |         |       |         |       |

0.00 SIDE SLOPE (DRIVING AT 400 W) 448 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 16.91 18.87 20.55 21.98 23.44 33.23 33.93 34.61 35.13 35.59 31.13 . 3 23.15 22.60 21.90 21.90 21.50 21.15 11.15 75 š \* 8 DEG -FRONT-WHEEL STEERING FAILURE ON 15 \* 24.00 19.58 21.16 23.20 23.20 22.87 22.87 22.19 219.07 OMEGA THETA Ĭ 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 12.43 TABLE 13. ĭ >

TABLE 14. FRONT-WHEEL STEERING FAILURE ON 7.5 DEG DOWNSLOPE (DRIVING AT 400 W)

| 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 00.0    | 24.00   | 24.00 | 31.00     |       |         | 1      |        |       | 00.00 |       |         | •     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|---------|-------|-----------|-------|---------|--------|--------|-------|-------|-------|---------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0000      |         | 20.23   |       |           | 31.00 |         | 7 . 15 | 9.23   | 4.23  |       | 00.0  | 00.0    | 0.00  |
| 0.70<br>1.20<br>2.27<br>2.27<br>0.00<br>2.27<br>0.00<br>4.05<br>4.05<br>0.01<br>4.05<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13 |           | 00.0    |         | 20.23 | 33.80     | 33.80 | 6.82    | 20.9   | 4.72   | 4.72  | 0.00  | 00.0  | 000     | 0.00  |
| !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5         | 00.0    | 20.49   | 50.49 | 33.55     | 33.55 | 5.48    |        | 1.97   |       | 00.0  | 00.0  | 9       | 0.0   |
| !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ## - M #  | 00.01   | 20.82   | 20.62 | 33.21     | 33.21 |         | •      | 77.    |       | 7     |       |         | 20.0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.4      | 900     | 19.55   | 23.49 | 34.76     | 30.26 |         | 9      |        | 9.70  | 7     | 6.15  | 1 . 28  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.05      |         | 19.05   | 24.77 | 15.39     | 20.05 | 4.13    | 4.74   | 4.74   | 4.13  | 7.51  | 7.42  | 3.28    | 2.83  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.05      | 2 . 48  | 18.35   | 26.29 | 34.25     | 27.17 | 2:19    | 09.4   | 4.27   | 5.54  | 4.34  | 8.74  | 5 . 5 6 | 4.47  |
| į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C. 78     | ***     | 17.65   | 27.79 | 37.11     | 15.55 | 3.70    | ***    | 5.62   | 5.07  | •0•   | 10.37 | 7.87    | 5.94  |
| !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 6.97    | 16.97   | 29.29 | 37.94     | 23.87 | 3.56    | 4.29   | 5.30   | 4.60  | 9.55  | 11.95 | 10.33   | 7.27  |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.7       | 10.00   | 16.34   | 30.69 | 38.72     | 22.32 | 3 - 48  | 4 - 15 | 5.02   | 4.20  | 1.01  | 13.66 | 12.78   | 1.27  |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.47      | 13.50   | 15.75   | 32.00 | 34.45     | 20.87 | 3.47    | 0      | 4.75   | 3.86  | 10.12 | 15.55 | 15.11   | * 6 * |
| į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.38     | 17.40   | 15.21   | 33.20 | <b>*0</b> | 19.54 | 3.53    | 07.    | 4.52   | 3.67  | 10.20 | 17.34 | 17.29   | 9     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * 6 * 7 " | 21.67   | 14.72   | 34.28 | 40.71     | 18.36 | 3.66    | 4.17   | * 9 *  | 3.33  | 10.17 | 14.00 | 19.45   | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.63     | 26.27   | 14.29   | 35.22 | 41.24     | 17.32 | 3.88    | 4.30   | 4.22   | 3,15  | 00.00 | 20.61 | 21.29   | 3     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.42     | 31 - 16 | 13.91   | 34.01 | 1.71      | 16.44 | 4.17    | 4.51   | 4.18   | 3.03  | 9.73  | 22.12 | 22.83   | • 95  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.29     | 36.30   | 13.54   | 36.67 | 42.13     | 12.51 | 4.55    | 4.81   | 4.21   | 2.96  | 4.4   | 23.37 | 24.39   | 4.87  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.20     | 41.64   | 13.19   | 37.24 | 42.56     | 15.05 | \$0.0   | 5.26   | 40.4   | 2.95  | 9.24  | 24.52 | 25.77   | .83   |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.17     | 47.29   | 12.41   | 37.76 | 43.01     | 14.44 | 5.6.5   | 9.00   | 75.    | 2.98  | 1.97  | 25.52 | 27.04   | . 7   |
| 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.19     | 53.09   | 12.39   | 36.18 | 47.49     | 14.01 | 5.97    | 4.39   | 4.87   | 3.04  | 6.67  | 26.13 | 28.25   | .63   |
| 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35.24     | 59.10   |         | 36.35 | *0.**     | 13.79 | 42.4    | 66.9   | 5.29   | 3.23  | 9.32  | 26.58 | 29.33   | 9.6   |
| 2.30 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30.33     | 65.31   | 11.36   | 38.45 | 44.62     | 13.65 | 4.54    | 7.71   | 5.8    | 7.4   | 7.95  | 74.91 | 30.35   | 4.55  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *         | 71.71   | 10.61   | 38.45 | 45.19     | 13.61 | • 30    |        | 6.50   | 3.74  | 7.57  | 26.92 | 31.26   | 4.52  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.77     | 78.30   | 10.40   | 38,30 | 45.63     | 13.74 | 4.07    | **     | 7.33   | 4.13  | 7.28  | 76.81 | 31.94   | 4.62  |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47.77     | 92.08   | 9.95    | 38.08 | 60.9      | 13.94 | 5.81    | 10.39  | 8 . 28 | 4.54  | 6.97  | 26.66 | 32.26   | 4.4   |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.43     | 95.06   | 9.53    | 37.77 | 46.53     | 14.25 | 40.4    | 11.42  |        | 5.24  | 4.67  | 26.44 | 32.57   | 4.47  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.11     | 94.26   | .03     | 37.39 | 47.03     | 14.62 | 5.27    | 12.48  | 10.75  | 2.4   | 9.32  | 71.02 | 34.42   | 10.23 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57.32     | 104.49  | . 47    | 36.95 | 47.60     | 16.05 | ***     | 13.72  | 12.21  | 7.06  | 5.43  | 25.86 | 33.32   | 10.53 |
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.59     | 114.38  | 7.01    | 36.42 | 48.27     | 15.54 | 4.54    | 14.40  | 13.46  | 8.35  | 2.40  | 25.50 | 33.74   | 9.0   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + 2 . 6 + | 122.33  | 7.08    | 35.82 | 10.64     | 91.91 | 4.13    | 1      | 15.83  | •     | * 95  | 25.07 | 34.31   |       |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67.42     | 130.55  | 6.29    | 35.20 | 49.81     | 16.76 | 3.67    | 17.90  | 16.07  | 9.79  | 0 * * | 24.64 | 34.87   | 11.73 |
| ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70.17     | 139.04  | 5 • 5 5 | 24.63 | 50.54     | 17.33 | 3 - 2 4 | 19.32  | 20.38  | 10.12 | 3.84  | 24.24 | 35.39   | 12.13 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74.74     | 147.92  | 4.83    | 34.04 | 51.30     | 17.89 | 2.82    | 19.78  | 23.21  | 10.45 | 3.35  | 23.84 | 35.91   | 12.52 |
| 10.05 8.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78.57     | 157.16  | 4.23    | 33.47 | 51.90     | 18.47 | 2.47    | 19.49  | 24.20  | 10.79 | 2.47  | 23.43 | 36.33   | 12.93 |
| 9.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82.49     | 166.82  | 3.75    | 32,03 | 52.36     | 19.13 | 2.19    | 10.14  | 29.10  | 11.17 | 0.18  | 22.98 | 36.65   | 13.39 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 84.52     | 176.85  | 3.27    | 31.85 | 52.80     | 20-14 | -       | 18.59  | 30.68  | 11.76 | . 8   | 22.30 | 36.96   | 3     |
| 6 51.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.63     | 187.15  | 3.00    | 31.10 | 53.05     | 20.02 | 1.75    | 10.14  | 30.89  | 12.22 | 2.09  | 21.77 | 37.13   | *     |
| • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44.57     | 197.58  | 2.95    | 30.99 | 53.00     | 21.04 | 1.72    | 10.0   | 30.97  | 12.29 | 7.00  | 17.78 | 37.16   | 7.7   |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96.10     | 208.01  | 3.14    | 30.55 | 52.86     | 21.52 |         | 17.82  | 30.08  | 12.57 | 2.20  | •••   | 37.00   | 90.51 |
| 01 60.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102.55    | 210.10  | 5.89    | 24.67 | ***       | 20.02 | 7.44    | 14.37  | 28.40  | 16.30 | 71.   | 0.4   | 4.6     | 4.6   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.17    | 227.42  | 4.39    | 22.07 | 48.82     | 29.49 | 3.73    | 13.32  | 20.51  | 17.51 | \ · · | 110/1 | 34.17   | 20.44 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.14    | 235.05  | 6.27    | 22.90 | *8.45     | 29.94 | 3.66    | 13.35  | 28.59  | 17.44 | 4.14  |       | 34.27   | 20.76 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 134.04    | 240.79  | 6.30    | 22.63 |           | 30.00 | 7.6     | 13.32  | 28.54  | 17.53 | *     | 15.40 | 34.24   | 21.01 |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 546.14  | 22.77   | 12.08 | 30.50     | 42.72 | 13.30   | 7.02   | 17.77  | 24.95 | 2.44  | 7.35  | 21.35   | 24.40 |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 254.11  | 22.62   | 15.00 | 30.87     | 39.58 | 13.21   | 0.25   | 17.97  | 23.11 | 16.03 | 10.01 | 21.61   | 27.71 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -24.44    | 245.97  | 22.00   | 14.04 | 31.61     | 36.38 | 12.05   | 7.12   | 17.28  | 22.41 | 15.40 | 10.74 | 22.13   | 26.87 |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.92     | 281.63  | 22.40   | 16.47 | 31.21     | 37.99 | 13.00   | 8.73   | 14.21  | 22.19 | 15.68 | 10.00 | 21.05   | 26.59 |
| 1.00.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.84     | 30.100  | 23.02   | 17.29 | 30.41     | 37.15 | 13.42   | 4.7    | 11.02  | 21.67 | 14.11 | 11.56 | 21.43   | 24.00 |
| =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41.74     | 324.07  | 23.33   | 10.22 | 30.33     | 36-18 | 13.57   | 3.45   | 10.03  | 21.13 | 14.33 | 12.17 | 21.23   | 25.33 |
| ፧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 102.94    | 350.58  | 23.62   | 18.79 | 30.00     | 36.38 | 13.70   | 3.12   | 1.5    | 20.64 | 79.9  | 12.65 | 70.12   | 24.76 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140.68    | 300.47  | 23.00   | 19.63 | 27.06     | 34.71 | 13.02   | 2.36   | 7.19   | 20.27 | 14.71 | 13.01 | 20.02   | 24.24 |

|                | *      | 0.00  | 0.0          |       | 2 -   | *       | 2.60  | 4.20          | 9:00  | • •     | 4.4   |       |       | . 24   | 9.31  | 4.24   | *::    | \$0.  | • •     | •     |       | -         |        | 4.72  | 10.09 | 10.54   | -         | 11.0        | 12.91 | 13.49  | 13.78       | *::*:      | 7.30   |         | 20.44  | 11.46  | 15.23  | 2.52   | 90.91  | 17:1   | -      | 36     |                                             | 10.02              | 20.02  | 3:13   | 17.14  |
|----------------|--------|-------|--------------|-------|-------|---------|-------|---------------|-------|---------|-------|-------|-------|--------|-------|--------|--------|-------|---------|-------|-------|-----------|--------|-------|-------|---------|-----------|-------------|-------|--------|-------------|------------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|---------------------------------------------|--------------------|--------|--------|--------|
| 400 W)         | Ş      | 00.0  | 000          |       | 2,50  |         | 3.03  | 5 + 2 9       | 7:65  | 10.22   | 12.00 | 27.51 | /61/1 | 21.51  | 23.44 | 24.73  | 56.09  | 27.33 | 76.87   | 29.46 | 30.42 | 31.00     | 31.44  | 31.00 | 32.41 | 33.03   | 33.67     | 7           | 35.42 | 31.45  | 34.21       | ~          | 36.22  | 70.45   | 33.00  | 33.24  | 30.17  | 4.29   | 20.38  | • •    | 500    | -      | Z 1 0 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4.27               |        | -      | 14.67  |
| AT             | 25     | 00.0  | 00.0         | 2000  |       | •       | 7.55  | •03           | 10.77 | 12.57   | ***   |       |       | 21.01. | 23.18 | 24.40  | 25.41  | 20.27 |         | 26.67 | 24.62 | 24.31     | 26.06  | 25.75 | 25.36 | 24.90   | 24.28     |             | 22.60 | 21.94  | 21.67       | 21.33      | 21.10  | 77.71   | 15.12  | 15.43  | 15.22  | 14.52  | 6.0    | 4.67   | 5.21   |        |                                             | ?                  |        | 1.04   | 3.34   |
| DRIVING        | ;      | 00.0  | 00.0         | 9     | •     |         | 7.60  | 15.0          | 4.25  | 9.78    | 71.01 | 10.27 | 70.00 | - un   | 6.69  | 4.41   | 4.15   |       | 9.52    | -     | 7.77  | *         | . 4    | 4.35  | 5.84  | 5 • 2 3 | •         |             | 2.2   | 96.0   | 0.98        |            |        | 200     |        | 4:36   | 4.50   | 2.27   | 4.65   | •      | 14.27  |        | 14.41                                       | 7.30               | 3.33   | ::     | 100    |
| _              | =      | 9.23  |              |       |       | 2.00    | 97.5  | 4.59          | 400   | 3.59    | 91.0  | 2.82  | 7     | 2.16   | 2.07  | 2.04   | 50.2   | 2.11  | 7:55    | 2.41  | 2.72  |           | 4.27   | 5.13  | 4.29  | 10.0    | 9.27      | 7.0         | 2.0   | 1.26   | 04.1        | 08.1       | . 63   |         | 7.50   | 7.21   | 7.41   | 10.07  | 7.46   | 7.46   |        | *      | 23.00                                       | 20.27              | 20.33  | 7.00   | 19.6   |
| SLOP           | 2      | 9.23  | 1.4          |       | ,     | 135     | 5.71  | <b>5</b> · 10 | 4.54  | 0:+     | 3.69  | 1.1   |       | 2.7    | 2.73  | 2.77   | 2+89   | 3.11  | 3.43    | 3.00  | 4.57  | ***       | 7.72   | 9.32  | 11.28 | 13.64   | 8.49      | 9 4 6       | 60.67 | *1.00  | 12.00       | 30.21      | 30.22  | 12.00   | 7.53   | 27.76  | 27.56  | 06.42  | 2.53   | 7.65 2 | 10.30  |        |                                             | 24.98              |        | 17.15  | 10.34  |
| DOWNSLOPE      | 70     | 7.15  | <b>6.5</b> 7 | 2.5   | 7     | 76.4    | 4     | 3.87          | 3.61  | 3.42    | 3.26  |       | 200   | 7.7    | 3.51  | 3.90   | 4.43   | 2.10  | £ • 6 5 |       | • •   | ****      | 11.53  | 13.16 | 14.95 | -       | 20.12     | 0/.4        |       |        | 10.08       |            | . 67   | 7.02    | 7      | 12.08  | 20     | 12.12  | 1.20   | 3.90   | 5      | 7.5    |                                             |                    |        |        | 79.0   |
| DEG            | =      | 7.15  | 5.57         | 5.17  | 79.   |         | 3.60  | 3.35          | 3.14  | 3.00    | 2.92  | 2.91  |       | 7.6    | 3.00  | 4.14   | 90.9   | 5.96  | ***     | 6.75  | 8     | 7         | 9 9 9  | 5.30  | 4.87  | *:3     | 3.67      | 2.47        | 7.03  | 1.77   | 1.70        | 1.68       | 1.67   | •       |        | ***    | 3.82   | 0+•    | 9.22   | 12.48  | 11:41  | 1.1    | •                                           | 20.4               | ***    | 12.84  | 7.18   |
| ON 15          |        | 31.00 | 33.04        | 32.63 | 32.25 | 20.7    |       | •             | 24.31 | 23.62   | 20.98 | 19.45 | •     | 0 4 9  | 15.03 | 14.31  | 13.72  | 13.21 | 12.78   | 12.45 | 12.68 | 10071     | 3.45   | 99.0  | 7     | 15.06   | 15.92     | 16.82       | 14.71 | 19.27  | 69.61       | 20.20      | 20.42  | 20.52   | 76.92  | 29.46  | 29.81  | 30.08  | 34.46  | 47.01  | 46.12  | 41.78  |                                             | 34.72              |        | 46.23  | 31.73  |
| FAILURE        | 2      | 0     |              |       | 77.75 | 13.59   | 34.14 | 34.93         | 35.74 | 36.57   | 37.39 | 38.15 | 38.74 |        | 40.39 | 40.04  | 41.30  | 41.78 | 42.32   | 42.92 | 43.47 |           | 44.92  | 45.55 | 46.30 | 47.18   | * O . O . | 29.44       | 70.05 | 51.64  | 51.73       | 51.74      | 51.74  | 2 :     | 7.     |        | -      | 40.4   | _      | 30.23  | 31.33  | 35.63  | 37.00                                       | 42.72              | 42.24  | 29.55  | 39.63  |
|                | 7      | 24.00 | 19.50        | 20.01 | 27.07 | 23.10   | 24.52 | 76.04         | 27.62 | 29.15   | 30.43 | 32.02 | 33.25 | 24.23  | 34.02 | 36.67  | 37.20  | 37.64 |         |       | 70.04 | 17.50     | 37.22  |       |       | 35.57   | 94.40     | 33.77       | 33.28 | 31.34  | 30.95       | 30.47      | 30.24  | 70.5    | 21.60  | 22.05  | 21.75  | 20.75  | 14.17  | ••••   | 7.44   | 11.25  | 3.24                                        |                    | 17.36  | 7.46   | 20.42  |
| ERIN           | ₹      | 24.00 | 19.50        | 20.01 | ***** | 10.01   |       | 18.27         | 17.59 | 16.91   | 16.28 | 15.66 | 1 2   |        | 3.84  | 13.44  | ~      | 12.45 | 12.17   |       | 01.10 |           | •      | *0    | 8.34  | 7.47    | 6.29      |             |       | 3.03   | 2.91        | 2.88       | 2.16   | 7 . 8 . | 4 5 8  | 6.24   | +5.4   | 7.53   | 4.00   | 21.37  | 20.39  | 79.97  |                                             | 10.42              | 10.01  | 22.06  | 13.61  |
| WHEEL STEERING | OMEGA  | 00.0  | 00.0         | 00.0  | 900   | 7000    | 1.09  | 3 - 4 5       |       | 56.9    | 10.01 | 13.55 | 17.50 | 21.02  | 31.36 | 36.52  |        | 47.43 | 53 • 15 | 90.65 | 45.15 | 77.48     |        | 91.0  | 98.66 | 106.19  | 90.4.1    | 122039      | 20.10 | 150.00 | 160.09      | 170.49     | 181.05 | 191.66  | 211.20 | 219.76 | 225.94 | 230.29 | 233+33 | 236.22 | 239.80 | 243.84 | 247.60                                      | 254.96             | 257.60 | 259.72 | 262.64 |
|                | THE TA | 00.00 | 0.00         | 0000  | 00.0  |         | 1.30  | 2 - 40        | 3.70  | 5 • 2 5 | 1002  | 16.0  | ***   | 13.47  | 17.88 | 20.22  | 22.57  | 24.90 | 27.22   | 29.51 | 31.78 | * 1 - 4 [ | 36.22  | 40.25 | 42.24 | 44.20   | 61.94     | * Z * G * L | 50.12 | 53.04  | 55.22       | 20.95      | 50.00  | 54.76   | 76.05  | 47.57  | 41.99  | 34.37  | 27.26  | 23.87  | 21.34  | 79.61  | -2.14                                       | . 48.83<br>. 48.83 | -70-21 |        |        |
| FRONT          | ž ×    | 00.0  | 0.0          | 000   |       |         | 0.02  | *0.0          | 0.07  | 0.13    | 0.0   | 0.30  |       | •      | 1.02  | 1 . 28 | 1 + 57 | 04.1  | 2 • 2 5 | 2.63  | 90.0  |           |        | 50.7  | 5.34  | 5.83    | 6.32      | 79.0        | - 6   | 8 2 6  | 12.0        | 9.13       | 9.52   |         |        | 10.67  | 10.45  | 10.44  | =      | Ξ      | 1 . 2  | ?:     | /2.11                                       | ?                  |        | 11.02  | •      |
| 15.            | ¥.     | •     | 0.23         | •     | •     | 2 . 3 5 |       |               | •     | •       | •     | ٠     | =:    |        | 67.6  | 7      | •      | •     | 7       | •     | •     |           |        | 16.24 | 16.79 | 17.32   | 7:0:      | 10.27       |       |        | 19.75       | ¥0.02      | 20.30  | 20.54   | 20.97  | 21017  | 21.35  | 21.53  | 21.70  | 21.84  | 21.99  | •      |                                             | • •                | 22.38  | · • !  | •      |
| TABLE          | ><br>- | 2.22  | 2.31         | 7.    |       | 2.98    | 3.13  | 3.26          | 3.39  | 3.51    | 3.62  | 7:7   |       |        | -     | 10.    | 4.03   | 4.03  | 4.02    | 4.00  |       | 7 . 5     | 3 . 60 | 7.5   | 1.04  | 3.54    | ***       | 3.32        |       | 2.65   | 7.66        | *          | 2.23   | ٠·      |        |        | 1 . 22 | 1.07   | •      | •      | 0.63   | •      | •                                           | 97                 |        | -      | •      |
| H              | 11 11  | 0.0   |              |       | 9 0   |         |       | -             | •     | •       | •     | •     | •     | •      |       | •      | 7.3    | •     | •       | 1.0   | - 1   |           |        | •     | -     | 5.3     |           |             |       |        | <br>  • • • | <b>6.1</b> | •      | = ;     |        | •      | 7:0    | •      |        | :      | 1.1    | •      | - :                                         | 7 4                | 6:0    | -      | 10.1   |

| TABLE 16. | 16.   | FRON                                        | FRONT-WHEEI | 7      | STEERING                                | G FAI                                   | LURE   | WITH     | FAILURE WITH COUNTERSTEERING, | TERE    | TEER  |           | 400 W,  | 7.5     | DEG SIDE | IDE S | SLOPE |
|-----------|-------|---------------------------------------------|-------------|--------|-----------------------------------------|-----------------------------------------|--------|----------|-------------------------------|---------|-------|-----------|---------|---------|----------|-------|-------|
| TIME      | >     | ¥                                           | ×           | THETA  | OMEGA                                   | 4.                                      | A 2    | 43<br>73 |                               | =       | 9.5   | 83        | *       | 15      | 25       | 3     | *5    |
| i         |       |                                             | 6           | 00.0   |                                         | 24.00                                   | 24.00  | 31.00    | 31.00                         | 7.15    | 7.15  | 9.23      | 9.23    | 00.0    | 00.00    | 00.0  | 00.0  |
|           | 2.27  | 0.22                                        | 000         | 65.0   | 00.0                                    | . 0                                     | . 0    | 33.80    | 33.80                         | 2.00    | 2.68  | 9.03      | 9.83    | 89.0    | 9.4.0    | *!:!  | -     |
|           | •     | 0.69                                        | 0.0         | 1.49   | 0.0                                     | 21.00                                   | 19.79  | 32.86    | 34.34                         | 5.84    | 2.47  |           | 9.51    | 96      | -        | 7.6   | 0.0   |
| 9.0       | 2.46  | 1:17                                        | 20.0        | 2002   | 10.0                                    | 22.40                                   | 18.93  | 31.34    | 35.35                         | 2.90    | 4.97  | 8 . 2 4   |         | 9 .     | 0.0      | 70.0  | 70.5  |
| 0.7       | 2.55  | 1.67                                        | *0.0        | 2,32   | 51.0                                    | 22.41                                   | 19.35  | 31.41    | 24.40                         | 5.67    | 79.4  | 7.65      | 70.0    | 50.5    |          | 2.43  | 2.54  |
| •••       | 2.7   | 2.72                                        |             | 06.4   | 96.0                                    | 20.41                                   | 22.29  | 33.54    | 31.63                         | 9.00    | 4.82  | 7.28      | 7.66    | 6.33    | 4.33     | 0.35  | 0.35  |
|           | 2.78  | 3.27                                        |             | 5.27   | 2.91                                    | 19.72                                   | 23.01  | 34.61    | •                             | 4.74    | 4.74  | 6.93      | 7.16    | 7.36    | 5.38     | 2.34  | 2.25  |
|           | 7 . 8 | 3.63                                        | 0.20        | 7.06   | 50.5                                    | 18.71                                   | 25.49  | 35.80    | 28.04                         | 4.47    | 4.71  |           | 6.62    | 9.20    | -        |       | ***   |
|           | •     | Ť                                           | 0.24        | 9.26   | 7.74                                    | 17.81                                   | 27.11  | 36.88    | 24.26                         | 4.25    | •     | 4:34      |         |         | ? .      |       |       |
|           | 2.98  | 4.4                                         | 0.34        | 00.11  | 10.94                                   | 17.13                                   | 28.48  | 37.71    | 24.74                         | 4.12    | 79.   |           |         |         |          | 95.1  | *     |
|           | •     | J.                                          | 0.53        | 14.62  | 69.7                                    | 16.53                                   | 29.76  | 30.45    | 23.33                         |         |       | 10 · 0    | 200     | 90.01   | 13.04    | 15.43 |       |
| 2.3       | 3.0   | 9 .                                         | 0.70        | 17.68  | 44.0                                    | 15.96                                   | 31.00  | 34.      | 54.17                         |         |       | 5.72      |         |         | 15.14    | 20.22 |       |
| 5.2       | 3.12  |                                             | -           |        | 23.09                                   | 70.51                                   | 32.7   | , , , ,  |                               | 2000    |       |           | 4.20    | 9.63    | 17.31    | 22.57 | 10.74 |
| 7:2       | 4     | 7.32                                        | -           | 19152  | 27.12                                   | 7                                       | 15.94  | 100      |                               |         | 80.5  |           | 10.4    | 9.68    | 18.93    | 24.33 | 10.55 |
|           |       |                                             | 7 6         | 0000   | 11.16                                   | 13.72                                   | 96.45  |          | 16.38                         | 8.7     |       | 4.25      | 3.88    | 9.60    | 20.31    | 75.54 | 10.24 |
|           |       | 76.                                         | 2           | 37.24  | 97.                                     | 13.70                                   | 37.77  | 42.06    | 14.54                         |         | 5 . 5 | 6.47      | 3.85    | 4.54    | 21.53    | 26.41 | 4.4   |
|           |       | 7                                           |             | 4.0    | ****                                    | 13.73                                   | 77.00  | 42.07    | 13.83                         | 4.74    | 8.79  | 1.68      | 3.88    | 7.      | 22.52    | 26.96 | 4.67  |
|           | 7     |                                             | 2097        | 45.93  | 51.10                                   | 13.79                                   | 38.94  | 42.04    | 13.27                         | 1.8.1   | 20.9  | <b></b>   | 3.75    | 9 . 6 5 | 22.94    | 27.41 | 4.24  |
|           |       |                                             | ***         | 50+30  | 55.78                                   | 13.80                                   | 39.21  | 42.05    | 13.00                         | 4.8     | 6.05  | 7.12      | 4.13    | 4.6     | 23.17    | 27.77 | 01.6  |
|           | -     | • 0                                         | 3.94        | 54.67  | 44.09                                   | 13.80                                   | 39.43  | 42.07    | 12.77                         | 4.92    | 4.17  | 7.37      | 4.35    | 9.6     | 23.39    | 28.15 | ***   |
|           | 7 - 1 | :                                           | 4.47        | 59.04  | 65.23                                   | 13.79                                   | 39.64  | 45.09    | 12.54                         | 4.97    | 6:58  | 7.63      |         | 9 6     | 23.63    | 28.51 | 9.4   |
|           | 7     | ****                                        | 5.01        |        | 70.01                                   | 13.77                                   | 39.85  | 42.13    | 12.32                         | 5.03    | 6.43  |           |         |         | 23.88    | 20.77 | 7     |
| 4.7       | 3.04  | 11.60                                       | 5.58        |        | 74.81                                   | 13.74                                   | 40.03  | 42.17    | 12.12                         | 2.00    | 95.9  | 25.0      | 17:0    | 7 6 6   | 21.12    |       |       |
| • •       | 3.07  | =                                           | 9 1 5       | 72.12  | 79.64                                   | 13.69                                   | 40.22  | 42.24    | 11.92                         | 5       |       |           |         | 6.52    | 74.45    | 2 4 4 | 9.20  |
| 11.9      | 3.05  | •                                           | . 7         | 76.48  | A * * * * * * * * * * * * * * * * * * * | 13.60                                   | 0.00   | 20.35    | 110/1                         | 7.5     |       |           |         | 4       | 24.03    | 29.73 | 40.   |
| 5.3       | 3.02  | 7:1                                         | ~           |        | 66.35                                   | 13.50                                   |        | /***     | 04:                           | 7.0     |       | 9 4 4     | 9 4     |         | 25.19    | 29.01 | 7.93  |
| 5.9       | 2.9   | 201                                         | 200         | 12.58  | 14.21                                   | 0.00                                    |        | 16.57    | 700                           | 5.23    | 7.47  |           | 4.57    | 9.30    | 25.32    | 29.90 | 7.93  |
| 2.4       | 7.4   | 7 • 7                                       | 70.0        |        | 10.44                                   | 7                                       |        |          | 7                             |         | , , , | *1.00     | 14.57   | 9.21    | 25.44    | 27.99 | 7.92  |
| •         | 2.4   | 12.18                                       | 7 - 6       | 43.43  |                                         | • • • • • • • • • • • • • • • • • • • • |        |          |                               |         | 7.82  | 10.40     | 4.4     | 9.13    | 25.65    | 30.08 | 7.92  |
| •         | 7     | ֓֞֓֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֜֓֡֓֓֡֓֡֓֓֓֡֓֡֓֓֡֓ |             | 14.501 |                                         | 12.02                                   | * 20.7 | 43.10    | 11.31                         | 5 . 47  | 0.03  | 10.67     | 95.4    | *0.     | 25.66    | 30.17 | 7.91  |
|           |       | 1007                                        | 10.82       | 30.40  | 118.83                                  | 12.70                                   | 40.73  | 43.25    | 11.30                         | 5 . 5 5 | 1.25  | 10.96     |         | 96.0    | 25.70    | 30.20 | 7.91  |
|           |       |                                             | 11.35       | 111.24 | 123.87                                  | 12.63                                   | 40.73  | 47.4     | 11.30                         | 5.43    | . 47  | 11.20     | 4 5 6   |         | 25.91    | 30.39 | 1.6   |
|           | 2.77  | 11.46                                       | •••         | 115.59 | 128.98                                  | 12.47                                   | 40.72  | 43.56    | 11.29                         | 5.71    | 1.4   | 99.       | • • •   |         | 10.02    | 10.00 |       |
| 7.1       | 2.73  | 11.20                                       | 12.35       | 119.93 | 134.16                                  | 12.30                                   | 40.71  | 43.77    | 11.29                         | B.79    | •     | 12.04     |         |         | 71.07    | 70.01 |       |
| 7:5       | 2.6   | 10.92                                       | ٠           | 124.28 | 139.42                                  | 12.11                                   | 40.70  | 96.0     | 11.27                         | 70.0    | 1063  | 1 2 . 0 . |         |         | 26.43    | 30.92 | 7.91  |
| 7.5       | 7.0   | •                                           | Ν.          | 128.65 | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 111072                                  |        |          |                               |         | 6.82  | ***       | 09.9    | 8.20    | 26.55    | 31.07 | 7.91  |
| 7.7       | 7.5   | 10.24                                       |             |        | 87.061                                  | 7 4                                     |        |          |                               | 0       | *100  | 13.94     |         | 9.05    | 26.64    | 31.23 | 7.92  |
| •         | 70.7  |                                             |             | 300    | 4.00                                    | 11.28                                   | 4      | 44.05    | 11.33                         | •       | 10.49 | 14.50     |         | 7.89    | 24.72    | 31.40 | 7.43  |
|           | 7     | 7                                           |             | 44.55  |                                         | *                                       | 40.5   | 45.10    | 11.36                         | 4.31    | 10.88 | 15.14     | 6.63    | 7.73    | 26.79    | 31.57 | 7.95  |
|           |       | 1.72                                        |             | 151.19 | 173.45                                  | 10.74                                   | 40.61  | 45.40    | 11.39                         | 42.4    | 11.29 | 16.44     | 9 • • 5 | 7.53    | 26.84    | 31.78 | 7.97  |
|           | 2.24  |                                             | 15.05       | 155.93 | 179.65                                  | 10.4                                    | *0.    | 45.48    | 11.45                         | •       | 11.72 | 16.75     |         |         | 58.65    |       |       |
|           | 2:12  | 7.90                                        | 15.21       | 140.79 | 100901                                  | 10.24                                   | 40.34  |          | 11.52                         | 99      | 12.15 | 09.7      | 7/00    |         | 10.02    | 77.7  |       |
| •         | 2.04  | 7.44                                        | 15.33       | 165.79 | 192.62                                  | 4.47                                    | 40.27  | 46.22    | 11.69                         |         | 00.21 |           |         |         | 77.76    | 13.55 |       |
|           | :     | 7:0                                         | 18.41       | 170.04 | 1 * * * 6 1                             | 1.70                                    | 40.17  | 46.5     | 89.                           | •       |       |           | 7       |         |          | 17.75 | 42.4  |
|           | =     | 4.71                                        | 18.46       | 176.33 | 206.43                                  | 4.5                                     | 40.04  | 46.79    | 1.7                           | 9 .     |       | 20.07     | •       |         | 26.17    | 33.01 | 37.0  |
| •         | 1.17  |                                             | •           | 101.48 | 213.67                                  |                                         | 20.40  |          |                               |         | 20.00 | 23.35     | 7.0     | =       | 25.69    | 33.27 | 7     |
| :         | •,    | Ō,                                          | 2.4         | 107.97 | 221016                                  |                                         | 74.5   | 74.7     | 72010                         |         |       | 24.62     | 7.10    |         | 24.96    |       |       |
| 100       | 79.   | •                                           |             |        | 04.822                                  |                                         | 14.0   |          |                               | ***     | 16.29 | 25.70     | 7.33    | 2 . 6   | 23.06    | 33.70 | 1.74  |
| ċ         | •     |                                             |             | 100    | 111111111111111111111111111111111111111 |                                         |        |          | )<br>}<br>•                   |         |       |           |         |         | 1        |       |       |

15 DEG SIDE SLOPE š S 25 400 W, 7 FRONT-WHEEL STEERING FAILURE WITH COUNTERSTEERING, -THETA × 10.0 17. TABLE

| -3                                            |  |
|-----------------------------------------------|--|
| <del>_</del>                                  |  |
| 4                                             |  |
|                                               |  |
| 3                                             |  |
| DEG DOWNSLOE                                  |  |
| "                                             |  |
| 4                                             |  |
| ₹                                             |  |
| う                                             |  |
| ×                                             |  |
| →                                             |  |
| r Ht                                          |  |
| ب                                             |  |
| ই                                             |  |
| $\Box$                                        |  |
| -                                             |  |
| S                                             |  |
| ഹ                                             |  |
| _                                             |  |
|                                               |  |
|                                               |  |
| \$                                            |  |
|                                               |  |
| $\simeq$                                      |  |
|                                               |  |
| 4                                             |  |
| •                                             |  |
| 75                                            |  |
| <b>~</b>                                      |  |
|                                               |  |
| ٠                                             |  |
| 7                                             |  |
| EERIN                                         |  |
| 9                                             |  |
| -                                             |  |
| 'n                                            |  |
| ERST                                          |  |
| 7                                             |  |
| -4                                            |  |
| _                                             |  |
|                                               |  |
| ⇒i                                            |  |
| ≂                                             |  |
| $\sim$                                        |  |
| WITH COU                                      |  |
| ₩.                                            |  |
|                                               |  |
| =                                             |  |
| $\overline{}$                                 |  |
| >                                             |  |
| FAILURE                                       |  |
| $\Xi$                                         |  |
| 4                                             |  |
| ⊃                                             |  |
|                                               |  |
| -                                             |  |
| ⋖                                             |  |
| Œ.                                            |  |
| _                                             |  |
| 75                                            |  |
| =                                             |  |
| STEERING FAILURE WITH COUNTERSTEERING, 400 W. |  |
| نح                                            |  |
|                                               |  |
| Ξ.                                            |  |
| Ψ.                                            |  |
| Ţ                                             |  |
| S                                             |  |
|                                               |  |
| Н.                                            |  |
| 되                                             |  |
| $\Theta$                                      |  |
| 7                                             |  |
| Ή.                                            |  |
| 3                                             |  |
| FRONT-WHEEL                                   |  |
| $\vdash$                                      |  |
| 7                                             |  |
| $\overline{}$                                 |  |
| $\simeq$                                      |  |
| 1                                             |  |
| ĺΨ                                            |  |
| •                                             |  |
|                                               |  |
| œ                                             |  |
| <del>1</del> 8                                |  |
|                                               |  |
| BLE                                           |  |
| $\vdash$                                      |  |
|                                               |  |
| Д                                             |  |

|      |         |         |         |         |         |           |       |             |        |           |         |         |           | •       | •       | í         |           |
|------|---------|---------|---------|---------|---------|-----------|-------|-------------|--------|-----------|---------|---------|-----------|---------|---------|-----------|-----------|
| TIME | >       | ¥ .     | ×       | THETA   | OMEGA   | ₹ .       | A 2   | 43          | *      | -         | 87      | 2       | **        | 5       | 25      | 23        | *5        |
|      | 20.2    | 00.0    | 00.0    | 00.0    | 00.0    | 24.00     |       | 31.00       | 31.00  | 7.15      | 7.15    | 4.23    | 9.23      | 00.0    | •       | •         | ē         |
| -    | 2.29    | 0.23    | 00.0    | 0.00    | 00.0    | 20.23     | ~     | 33.80       | •      | 5.82      |         | 9.72    | 9.72      | 000     | 00.0    | 000       | 00.0      |
|      | 2043    | 0.40    | 000     | 00.0    | 00.0    | 20.49     | 20.49 | 33.55       | 33.55  | 2.48      |         |         |           | 0000    | • : •   | •         |           |
|      | 46.7    | 07:1    | 000     | 00.0    | 00.0    | 20.02     | 20.02 | 33.21       | 33.621 | 1 · 1 · 1 |         | 7.80    | 7.47      | * . 89  | *       | 0.25      |           |
|      | 2.81    | 2.27    |         | •       | 0.15    | 19.55     | 23.49 |             | 30.26  |           | 2.00    | 7.34    |           | *       | 9 . 1 5 | •         | -         |
|      | 2.92    | 2.84    | 0.02    |         |         | 19.05     | 24.77 | 35.39       | 28.85  | 4.13      | 4.76    | 6.74    | 6113      | 7.51    | 7.42    | 3.28      | 2.83      |
|      | 3.02    | 3.44    | •0•0    | 2.61    | 2 - 48  | 18.35     | 26.29 | 36.25       | 27.17  | 3.84      | 4.60    | 4.27    | 5.58      | 9.18    | •       | 95 • 5    | 4:47      |
| -    | 3.12    | 4.05    | 0.07    | 4.05    | ****    | 17.65     | 27.79 | 37.11       | 15.65  | 3.70      | *       | 5.02    | 5.07      | 60.6    | 10.37   | 7.87      | 2.0       |
|      | 3.21    | 89.4    | 0.13    | 5.78    | 4.97    | 16.97     | 29.29 | 37.94       | 23.87  | 3.56      | 4 . 2 9 | 5 . 38  | 09.4      | 9 5 2   | 11.95   | 10.33     | 7.27      |
|      | 3.29    | 5.33    | 0.20    | 7.76    | 10.00   | 16.34     | 30.69 | 38.72       | 22.32  | 3.40      | 4.15    | 5,02    | 4.20      | 16.6    | 13.66   | 12.78     | 8.27      |
|      | 3.36    | 5.78    | 0.31    | 4.97    | 13.50   | 15.75     | 32.00 | 34.45       | 20.87  | 3 - 47    | * 10    | 4.75    | 7.86      | 10.12   | 5.55    | 12.1      | *         |
|      | 3.41    | 6 . 6 5 | ***     | 12.30   | 17.40   | •         | 33.20 | 40.11       | 19.54  | 3.53      | 4.10    | 4.59    | 3.61      | 10.20   | 7       | 18.65     | 0.0       |
|      | 3.46    | 7.32    | 0.40    | 15.00   | 21.64   | 0 + • + 1 | 34.81 | 41.10       | 17.76  | 3.57      | 4 • 25  | 4.70    | 3.38      | 50.0    | 19.30   | 22.79     | * S • O 1 |
| Ì    | 3 . 49  | 7.98    | 0.90    | 17.86   | 26.10   | •         | 36.43 | 41.87       | 15.98  | 3.71      | 5       |         | 3.21      | 4.65    |         | 25.03     | 92.01     |
|      | 3.50    | 77.8    | -03     | 20.89   | 30.65   | 13.51     | 37.51 | 42.24       | 14.0   | 3.99      | 4 . 8 2 |         |           |         | 84.77   | 7007      |           |
|      | 3.50    | 4.24    | .30     | 23.99   | 15.23   | 13.33     | 38.40 | 42.49       | 13.84  | 4.33      | 2.0     | 2.04    | 3.23      | 7.4     | •       | 20./7     | 7         |
|      | 3 . 4 9 | 4.42    | 1 • 60  | 27.15   | 39.82   | 13.23     | 34.09 | 45.45       | 13.10  |           | 9 . 9   | +003    | 90.0      | 4.20    | 67.63   | 56.73     | -         |
|      | 3.46    | 10.53   | 1.93    | 30.33   | 44.43   | 13.13     | 39.43 | 42.80       | 13.51  |           | 6 • 22  | 75.4    | 3.57      |         | 20.33   | 29:31     |           |
|      | 3.42    |         | 2.29    | 33.53   | 49.08   | •         | *0.0  | 45.04       | 12.07  | 5.50      |         |         | n • • • • | 7.0     |         |           |           |
| -    | 3,37    | . 67    | 2.69    | 36.76   | 53.79   | ē         | 40.25 | 43.20       | 11.82  |           | 7.00    | 7.02    | 7 .       |         | •       | 20.00     |           |
|      | 3,32    | 12.19   | 9:0     | 10.0    | 58.57   | 12.54     | 0.0   | ***         | +9-1-  | 5.42      | 09.     | 6.0     |           |         | , 100/7 |           |           |
| - !  | 3.26    | 12.68   | * 5 * 6 | 43.3    | 63.45   | 12.27     | 64.0  | 43.78       |        |           | 1.0     |         | ) ·       |         |         |           |           |
|      | 91.0    | 3.      |         | 9       | 7       |           | 95.0  | \ T • * * * | 11.42  | 6.7.9     |         |         | 97.0      |         | • •     | 3000      |           |
| ļ    |         | 90.5    |         | 90.06   | 19.67   | 000       |       |             |        | 17.4      |         | 74.5    | 35.4      | 7.83    | 28.47   | 31.47     | 7.84      |
|      |         |         |         |         | 3 2 4 5 | ****      |       | E F - 2 3   | ٠.     |           |         | 13.87   | 8 7       | 7.66    | 28.54   | 31.44     | 7.77      |
|      |         | 95.41   |         | 90.76   | 0000    | 72.01     |       | 45.42       | 9000   | 4.27      | 50.1    | 01.51   | •         | 7.54    | Š       | 31079     | 7.7       |
|      | 2.7     |         | 4.42    | 44.4    | 94.79   | 10.57     | 40.0  | 45.63       | 11.02  | 6 - 17    | •       | 7       | 6.43      | 7.40    | 'n      | 31.94     | 7.71      |
|      | 2 . 6 2 | 50.6    | 6.92    | 40.84   | 100.57  | 10.20     | 40.71 |             | •      | 5.96      | :       | 17.44   | 05.9      | 7 . 1 4 | 28.50   | 32.21     | 7.00      |
|      | 2.50    | 15.23   | 7.40    | 71.95   | 106.61  | 9.83      | 40.57 |             | 11.26  | 5.74      | 13.04   | 18.71   | 6.58      | 99.9    | 28.40   | 32.48     | 7.6       |
|      | 96.5    | 15.36   | 7.87    | 75.96   | 112.93  | ***       | 40.43 | 16.91       | 11.39  | 5.51      | 13.74   | 20.23   | 6 • 6 5   | 19.9    | 7       | 32.77     | 7.97      |
| ļ    | 2.24    | 15.46   | •       | 80.13   | 119.55  | 8.99      | 40.24 | 47.28       | 11.54  | 5 . 25    | 14.53   | 22 . 12 | 6.74      | 6 . 29  | -       | 33.10     | .00       |
|      | 2.10    | 15.52   | •       | 84.52   | 126.49  | 9.45      | 40.04 | 47.85       | 11.72  | 4.43      | 15.25   | 24.04   | 30 1      |         | 3 (     | 33.49     | 02.0      |
| ì    | • • •   | 15.54   | -       | 61.6    | 133.76  | 7.91      | 39.85 |             | 68.    | 4.62      | •       | 25.98   | 6 - 4 P   | 0.0     | 27 24   | 00000     | 7 7       |
|      | . 78    | 15.53   | •       | 44.17   | 0 *     | 46.7      | 39.65 |             | 12.07  | 4.32      | 70.01   | 4       | 60.       | 46.1    | 27.40   | 3 - 1 - 2 |           |
| 1    | •       | 4.51    | •       | 74.57   |         |           | ***   |             | 97.7   |           | 7.7     |         | 7.25      |         | 24.47   |           |           |
|      | 7       | 7.00    | •       |         | //•/61  |           | 24.54 |             | 1      |           |         |         | 7. 17     | 4       | 25.17   | 34.92     | 8.83      |
|      |         |         |         |         | 2000    |           |       |             | 1007   | 2         | 19.67   | 9       | 7 5 6     | 4.54    | 21.77   | 34.89     | -         |
|      |         | ****    |         |         |         | 4444      | 10.00 | • •         | 10.4   |           | 17.77   | 28.89   | 9.37      | 49.6    | **      | 34.62     | 79.0      |
| 1    | . 94.6  |         |         | 117.18  |         | 7.27      | 34.74 |             | 17.33  | 4.25      |         | •       | 10.12     | \$.09   | 2.00    | 34.11     | •0•1      |
|      |         | *       |         | 150.031 | 202.12  | 8.12      | 32.61 | 47.66       | 19.68  | 4.74      | 17.54   | 27.83   | •         | 5.49    | 6.23    | 33.34     | 12.14     |
|      | 7       |         |         | 167.63  | 209.36  | 4         | 30.21 | 46.39       | 22.32  | 5.34      | •       | 27.09   | 13.03     | 0+.4    | 11.05   | •         | 13.40     |
| . ~  | 0.26    | 14.02   | •       | 193.68  | 215.17  | ***       | 29.26 | •           | 23.35  | 15.5      | 17.01   | 26.87   | 13.64     | 19.9    | 13.43   | 32.21     | 14.67     |
| •    | ~       | 14.78   |         | 231.64  | 219.29  | 4.47      | 20.95 | 45.74       | 23.70  | 5 • • 5   | 14:00   | 26.71   | 79.6      | 4.77    | 15.40   | 32.02     | •         |
| -    | 970     | 14.77   | 10.01   | 273.98  | 221.58  | * 6 * 6   | 20.70 | 48.43       | 23.99  | -0.9      | 16.76   | 26.53   | 70.       | 9       |         |           |           |
| •    | *       | Ξ       | ٠       | 204.75  | 222.29  |           | 16.99 | 41.36       | 34.74  | 7.87      | 1.92    | 24.16   | 21.47     |         | 11.00   | 20.76     | 05:4      |
| •    | 99.0    | 14.79   | •       | 262.16  | 222.36  | 15.40     | 4.7   | 30.24       | *4.5   | •         |         | •       | 26.05     | 20.9    | •       | 20.67     |           |
|      | :       | 1417    | •       | 251.25  | 222.79  | •         | 28.33 | 10.63       | 27.41  | 0.27      | •       | •       | 16.27     |         | •       | •0•0      |           |
| ١    |         | 14.72   | 10.40   | 250.54  | 223+84  | 12.21     | 20.34 | 42.97       | 24.54  | 7.09      | 60.     | 24.75   | 14.30     | 2.00    |         | 2040      |           |
|      | ***     | 49.4    | :       | 244.60  | 326.34  |           | •     |             |        |           |         |         | 7         | •       | 4       |           |           |
|      |         |         |         |         |         |           |       |             |        |           |         |         |           |         | • ~     |           | 4.67      |

FRONT-WHEEL STEERING FAILURE WITH COUNTERSTEERING, 400 W, 15 DEG DOWNSLOPE TABLE 19.

| TIME | >     | E.      | ×       | THETA     | OMEGA    | ₹       | 4 Z   | A 3     | *        | 10      | 8.2     | 93      | 7<br>0 | <b>15</b>    | 25    | 53    | * ·  |
|------|-------|---------|---------|-----------|----------|---------|-------|---------|----------|---------|---------|---------|--------|--------------|-------|-------|------|
| 0.0  | 2.22  | 00.0    | 00.00   | 00.0      | 00.0     | 24.00   | 24.00 | 31.00   | 31.00    | 7.15    | 7.15    | 9.23    | 9.23   | 00.0         | 03.0  | 00.0  | 0.0  |
| •    | 2.31  | 0.23    | 800     | 00.0      | 00.0     | 19.58   | 9.58  | 33.06   | 33.06    | 5 - 5 7 | 5.57    |         | ***    | 00.0         | 00.0  | 00.0  | 9 0  |
|      | 77.   | 1 / 1   |         | 00.0      | 00.0     | 10.07   | 70.07 | 32.22   | 12.22    | 4.82    | * . 8 2 | 7.5     | 7.59   | 2.00         |       | 00.0  | 0    |
|      | 2.82  |         |         | -         | 90.0     | 20.06   | 21.55 | 32.69   | 30.0     | * 0 *   | 4.62    | 6.47    | 4.67   | 4.83         | 4.08  | 0.22  | 0.2  |
| •    | 2.18  | 2.35    | 000     | 09.0      | 0.34     | 19.33   | 23.19 | 33.59   | 29.18    | 3.90    | 4.42    | 4 . 35  | 2.80   | ***          | 9     | 1.17  | -    |
|      | 3.13  | 2.96    | 0.03    | 1.30      | 1.09     | 16.91   | 24.52 | 34.14   | 27.72    | 3.60    | 4:15    | 5.71    | 91.5   | 7.60         | 7.55  | 3.03  | 7.0  |
|      | 3.26  | 2.60    | *0.0    | 2.40      | 2 • 4 5  | 18.27   | 26.04 | 34.93   | 26.04    | 3.35    | 2.87    | 9:      |        | 75.0         | 50.   | 2.24  | 7    |
|      | 4     | 7.56    | 200     | 3.70      |          | 17.59   | 27.62 | 35.76   | 24.31    | *       |         |         |        | 9.78         | 12.67 |       |      |
| •    |       |         |         | 52.5      | 96.9     | ***     | 27.15 | 70.05   | 24.22    | 000     | 46.6    |         | 4      | 10.12        |       | 7     |      |
| •    | 3000  | •       | 0.00    | 10.4      | 0.0      | 77.9    | 20.02 | 76.54   | 94.07    | 2.94    | ***     |         | 2.82   | 10.27        | 9     | 15.22 | 9    |
|      |       | •       |         | 40-17     | 13.50    | * 1 . 5 | 33.25 | 38.79   |          | 3.01    | 3.0     | 7       | 2.59   | 10.32        | 18.30 | 10.92 | 4.5  |
| 2.5  | 1.07  | _       | 0       | 13.32     | 21079    | *       | 34.79 | 39.70   | 16.39    | 91.0    | 3.18    | 3.20    | 2.43   | 10.00        | 20.39 | 22.72 | •    |
| 2.7  | 3.92  | 6.63    | 0.74    | 15.73     | 26.31    | 13.82   | 36.37 | 40.43   | 4.6      | 3.38    | 3.42    | 3.33    | 2.32   | 4.47         | 22.48 | 24.93 | :    |
| 2.9  | 3.46  | 4.38    | 1.02    | 18.23     | 30.92    | 13.56   | 37.38 | 40.74   | 13.56    | 3.76    | 3.75    | 3.59    | 2.35   | <b>6 7 6</b> | 24.01 | 26.49 | 7    |
|      | 3:0   | 2       | 1.29    | 20.73     | 35.57    | 13.40   | 36.14 | 10.11   | 12.69    | 4.25    |         | -<br>-  | 2.46   | 800          | 25.30 | 27.5  |      |
| 7:7  | 7.0   | 2       | . 5     | 23.22     | 40.24    | 13.27   | 38.79 | 41.20   | 12.03    |         | 0/-     |         | 2 . 6  | ****         | 27.13 | 28.97 |      |
|      | 7.4.5 | 11.59   |         | /0.47     |          |         | 37.00 | 64.1    | 70.1     | 9 0     | 9       |         | 3.30   | 9.05         | 27.73 | 29.14 | 7.7  |
|      |       | 0000    | 44.6    |           | 4        | 12.40   | 19.72 |         |          | 4       | 05.9    | 4.74    | 3.95   | 9.82         | 27.80 | 29.39 | 7.6  |
| -    | 3.67  | • •     | 3.04    | 32.78     | 24.69    | 12.21   | 39.72 | 42.40   | 10.95    | 4.85    | 7.17    | 7.79    | 4.72   | 8.55         | 27.81 | 29.68 | 7:4  |
|      | 3.62  | =       | 7.40    | 35.09     | ****     | 11.74   | 39.72 | 42.90   | 10.93    | 4.82    | 1.94    | 90·6    |        | 0.22         | 27.80 | 30.03 | •    |
|      | 3.74  | =       | 70.0    | 37.39     | 90.69    | 11.20   | 39.47 | 47.48   | 10.94    | 4.53    | 9 9     | 10.57   | 4.37   |              | 71.12 |       |      |
|      |       | 15.48   |         | 39.66     | 74.91    | 10.7    | 39.62 | 70.0    | 96.0     | 6.24    |         | 7.7     |        | 7.20         | 27.70 |       | 7.   |
|      | 7.6   | 16.03   |         | 04 - 17   | 80.27    | 24.01   | 75.45 |         | 10.44    | 90.     |         |         | 7      |              | 27.45 | 7     | 7.7  |
| -    |       | 66.6    | 76.3    | 40.44     | 9/158    | 0.01    | 34.00 |         | 50.1     |         | 13433   | 9.0     |        |              | 27.59 | 31.69 | 7.7  |
|      |       | 7 0 0 0 | 30.4    | 0 T T T T |          | 300     |       | 200     |          | 5.23    | 14.79   | 21.89   | 6.53   | 4.25         | 27.51 | 32.12 | 7.6  |
|      |       | 17.92   | 50.4    | 16.02     | 103.48   | 9.02    | 36.96 | 46.83   | 11047    |         | 91.9    | 25.27   | • 20   | 5.62         | 27.27 | 32.76 | 9.0  |
|      | 3000  | 16.31   | 7 . 34  | 52.68     | 110.34   | 7.04    | 38.60 | 47.83   | 11.79    | 4 - 1 2 | 19.11   | 27.81   | 6.88   | * 6 . *      | 27.02 | 33.46 | 8.2  |
| ;    | 2.9   | 10.66   | 7.82    | 54.68     | 117.43   | 91.9    | 38.24 | 48.77   | 12.09    | 3.60    | 20.08   | 28.48   | 7.06.  | 4.31         | 26.78 | *     |      |
|      | 2:75  | 16.98   | 8.29    | 57.01     | 124.98   | 2.64    | •     | 49.32   | 12.28    | 3.30    | 22.06   | 28.80   | 7.17   | 3.45         | 20.63 | 26.   | •    |
| 4.5  | 2.57  | 19.24   | .74     | 58.97     | 133.03   | 5.10    | 37.87 | 49.80   | 12.43    | 3.02    | 22.06   | 29.09   | 7.26   | 3.02         | 19.07 |       |      |
| •    |       | 19.61   | • • •   | 95.0      | 04.14.   | F       | 10.70 |         | 75.4     | 9.00    | 22.03   | 29 - 11 | 96.6   |              | 26.4  |       |      |
| •    | 7.    | 14.73   | • • • • |           | 190001   | 71.0    | •     |         | 96.7     | 2.00    | 21.74   | 79.10   | ***    | 2.41         | 26.08 | 34.88 |      |
| :    |       | 17.72   | 74.4    |           |          |         | 27.75 | 7 6 6 7 |          | 2       | 60.12   | 70.04   | 8.35   | 3 . 42       | 25.28 | 34.84 | . 4  |
|      |       | 20.25   |         | 9         | 70.09    | 5.0     | 35.50 | 49.67   | 14.97    | 3.00    | 20.73   | 29.01   | 8.74   | 3.40         | 24.85 | 34.77 | 2.7  |
| 7.7  | -52-  | 20.40   | 10.74   | 55.96     | 189.89   | 5.15    | 34.58 | 46.59   | 15.95    | 3.01    | 20.20   | 28.96   | 9.32   | 3.61         | 24.21 | 34.72 |      |
| 7.9  | 1.07  | 20.53   | 10.43   | 53.10     | 199.25   | 10.25   | 22.33 | 43.26   | 29.45    | 5 • 9 8 | 13.04   | 12.57   | 17.20  | 7.17         | 15.63 | 30.26 | 1203 |
| :    | 0.92  | 20.45   | 11.09   | 51.11     | 207 - 10 | 9.42    | 21.63 | 44.04   | 30 - 1 4 | 5 • 50  | 12.63   | 25.75   | 17.60  | 04.4         |       | 20.86 | -    |
| 6:3  | 0.7   | 20.74   | 11.22   | 47.10     | 212.75   | 9.28    | 21.11 | 44.20   | 30.48    | 5.42    | 12.33   | 25.82   | 17.92  | 05.4         |       | //•00 |      |
|      | 7.0   | 20.     | 1::31   | 40.50     | 214.04   | 9.22    | 20.53 | 44.23   | 31.30    | 5 . 3 . | 64.     | 25.83   | 18.26  |              |       | 7     | 7    |
|      | 9,0   | • 1     |         | 32.60     | 217-17   |         | 16.22 | 12.03   | 36.05    |         | 7.50    | 64.15   | -24.74 | 10.12        |       | 77.72 | 12.1 |
| •    | 7.0   | 0 6     | 7       | •         | 00.717   |         | 7:    | 10.11   |          |         |         | 22.50   | 24.50  | 15.5         |       | 26.97 | 11.7 |
| -    | 0.0   | Э С     |         | 01.4      | 21415    | 12.2    | 7.70  | 78.42   | 45.38    | 40.4    |         | 22.44   | 24.50  |              | 5.34  | 26.90 | 31.7 |
|      |       | 70.02   | 11.92   |           | 214:12   | 3.6     | *     | 38.31   | 45.61    | 9 • 10  | 4.37    | 22.37   | 26.64  | 4.7          | 5.24  | 26.02 | 31.9 |
|      | -0.50 |         |         | 43.26     | 215.63   | 13.04   | 7.51  | 30.34   | 45.54    | .0.0    | 4:39    | 22.39   | 24.42  | •••          | 4.63  |       | 31.4 |
|      | 40.0  | •       | 11.29   | \$0.48    | 214.85   | 12.45   | 10.4  | 40.05   | 42.31    | 7.27    | 11.9    | 23+33   | 24.63  | 1.11         |       | •     | 20.7 |
| 100  | .0.0  |         | 11:17   | 52.71     | 213.22   | 10.62   |       | 42.48   | 14.41    | 4.12    | 1.02    | 24.66   | 19.01  | 7.36         | 1.15  | 35.22 | 23.7 |
|      |       |         |         |           |          |         |       |         |          |         |         |         |        |              |       |       | •    |

#### **APPENDIX**

# TRACTION FORCES AT VARIOUS ELECTRIC POWER LEVELS AS A FUNCTION OF WHEEL SPEED

Traction forces (or wheel torques) as a function of vehicle speed and power input into the electric drive motor are not available.

For these studies, the traction forces developed by the LRV have been based on a selected electric power level, assumed to remain constant during the time interval for which the LRV motion is to be studied. The traction forces are then derived from general mechanical relations.

#### I. General Considerations

$$(1 \text{ ft-lb/s} = 1.35636 \text{ W})$$
 (2)

1 mkg/s = 
$$\frac{746}{76.04}$$
 W = 9.810 W

with

$$R_{eff}$$
 effective wheel radius [36.58 cm (1.2 ft = 14.4 in.)]

u 
$$2R\pi \cdot \frac{n}{60}$$
 = circumferential speed (m/s)

F circumferential force (kg)

W power (W)

n rotational speed of wheel (rpm)

Power = F · R · 
$$\frac{2\pi n}{60}$$
 · 9.81 (W)

or the torque

$$F \cdot R = \frac{power(W)}{n} \cdot 0.9734 \text{ (mkg)}$$

and the tractive force

$$F = \frac{1}{R} \cdot \frac{\text{power (W)}}{n} \cdot 0.9734 \text{ (kg)}$$

These are the general equations converting the electric power consumed into the circumferential force at the wheel. They do not yet represent the performance of the LRV drive system with its mechanical and electrical losses.

The preliminary LRV Operations Handbook<sup>1</sup> presents the LRV traction drive performance (dc-motor-harmonic drive-drive controller) for full voltage (36 V), and the systems efficiency [based on thermal-vacuum test data with 121°C (250°F) assembly temperature, with voltage applied to the end of 2.44-m (8-ft) pigtails].

Notwithstanding later revised system efficiency data, this information has been used to derive the needed relationship between

ELECTRIC POWER INPUT - MECHANICAL POWER OUTPUT

The data in Table A-1 have been compiled from the handbook.

TABLE A-1. MECHANICAL OUTPUT OF LRV TRACTION DRIVE

|                          | Wheel | Torque | η    |
|--------------------------|-------|--------|------|
| Wheel output speed (rpm) | mkg   | ft-lb  | (%)  |
| 31                       | 10.77 | 78.5   | 39   |
| 36                       | 8.09  | 58.5   | 47   |
| 49                       | 4.56  | 33     | 53.5 |
| 68                       | 2. 35 | 17     | 56   |
| 91.5                     | 1.18  | 8.5    | 52   |
| 118                      | 0.52  | 3.75   | 43   |

<sup>1.</sup> Anon: LRV Operations Handbook. Appendix A, July 17, 1970, p. A8.

Using equation (4), the mechanical power (torque-speed) at the wheel is converted into electrical power in Table A-2. The required power input into the electric drive motor is obtained as a function of the system efficiency, and is given as W in Table A-2.

TABLE A-2. ELECTRICAL POWER INPUT FOR VARIOUS WHEEL CONDITIONS

| Wheel<br>Speed<br>(rpm) | Po<br>Torque<br>mkg/min | ower at Whee  × rpm ft-lb/min | l<br>Electrical<br>(W) | Efficiency | Power Input W in (W) |
|-------------------------|-------------------------|-------------------------------|------------------------|------------|----------------------|
| 31                      | 336                     | 2434                          | 345                    | 39         | 885                  |
| 36                      | 292                     | 2106                          | 300                    | 47         | 638                  |
| 49                      | 224                     | 1617                          | 230                    | 53.5       | 430                  |
| 68                      | 160                     | 1156                          | 164                    | 56         | 293                  |
| 91.5                    | 107                     | 778                           | 110                    | 52         | 212                  |
| 118                     | 61                      | 442                           | 62.5                   | 43         | 145                  |

The above is not an indication of the maximum power level available during operation of the LRV. From other sources of information, it appears that maximum electric power input into the drive motor may be as high as 700 W for short periods of time.

However, no information is available at present as to the allowable duration of such a high power consumption. Therefore, it has been assumed for this application that maximum power should not exceed 400 W per wheel.

### II. Power Required to Overcome Resistance of Free-Rolling Wheel

According to the Bekker equation, the LRV wheel should have a rolling resistance in lunar soil of 2.72 kg (6 lb). This resistance is independent of vehicle speed. If accumulated soil would be encountered (providing deeper sinkage of the LRV wheel), the resistance may be as high as 4.08 kg (9 lb) per wheel. However, for the purpose of these motion studies, a resistive force of 2.72 kg (6 lb) has been used.

The power required to overcome the free-rolling resistance of the wheel as a function of vehicle speed is shown in Table A-3.

It may be assumed that a certain power setting (at the hand-controller) would remain constant for the time interval of the motion under study and that this power would not change because of the change in drive motor speed under varying load. The latter assumption is, of course, not truly realistic, but it may be considered a second-order effect, compensated by a slight adjustment of the hand-controller setting by the astronaut. The power levels of 200, 300, and 400 W have been used for the purpose of this study.

Table A-4 indicates the free traction force that would be available at the wheel after the power to overcome the rolling resistance has been deducted. Table A-4 gives a summary of the free traction force. Table A-5 summarizes the free traction force and the force coefficient T/W; the latter has been plotted in Figure 2 (page 4).

TABLE A-3. POWER CONSUMPTION CAUSED BY FREE-ROLLING RESISTANCE

|     |               |       |            |                             |            |      | Wheel Speed for              | Power at Drive |
|-----|---------------|-------|------------|-----------------------------|------------|------|------------------------------|----------------|
|     |               |       | Power      | Power of Rolling Resistance | sistance   |      | $R_{eff} = 36.58 \text{ cm}$ | Motor          |
| >   | Vehicle Speed | þ     | Mechanical | anical                      | Electrical | ٤    | (1.2 ft)                     | W              |
| s/m | km/hr         | ft/s  | mkg/s      | ft-lb/s                     | (W)        | (%)  | (rpm) <sup>a</sup>           | (W)            |
| 0   | 0             | 0     | 0          | 0                           | 0          | !    | 0                            | 0              |
| 0.1 | 0.36          | 0.328 | 0.27       | 1.968                       | 2.67       | 1    | 2.61                         | ı              |
| 0.5 | 1.80          | 1.64  | 1.36       | 9.842                       | 13, 35     | 10   | 13, 1                        | 130            |
| 1.0 | 3.6           | 3.28  | 2.72       | 19,685                      | 26.70      | 25   | 26.1                         | 107            |
| 1.5 | 5.40          | 4.92  | 4.08       | 29.528                      | 40.05      | 48.5 | 39.2                         | 82.5           |
| 2.0 | 7.2           | 6.56  | 5.44       | 39.37                       | 53.40      | 55   | 52.2                         | 97             |
| 2.5 | 9.0           | 8.20  | 6.80       | 49.21                       | 66.75      | 56   | 65.3                         | 119            |
| 3.0 | 10.8          | 9.84  | 8.16       | 59.06                       | 80.11      | 55   | 78.3                         | 145            |
| 3.5 | 12.6          | 11.48 | 9.53       | 68.90                       | 93.46      | 52   | 91.4                         | 180            |
| 4.0 | 14.4          | 13.12 | 10.89      | 78.74                       | 106.8      | 48   | 104.4                        | 222            |
| 4.5 | 16.2          | 14.76 | 12.25      | 88.58                       | 120.2      | 44   | 117.5                        | 272            |
|     |               |       |            |                             |            |      |                              |                |

a.  $1 \text{ km/hr} = 7.2527 \text{ rpm for } R_{eff}$  of 36.58 cm (1.2 ft).

TABLE A-4. FREE TRACTION FORCE AT ONE WHEEL

|                |                     |              |                   |       |       | Power at Drive Motor | rive Mo | tor  |                   |       |      |
|----------------|---------------------|--------------|-------------------|-------|-------|----------------------|---------|------|-------------------|-------|------|
|                |                     |              |                   | 200 W |       |                      | 300 W   |      |                   | 400 W |      |
| Wheel<br>Speed | Vehicle<br>Velocity | Power<br>Wrr | Power<br>at Wheel |       | £-    | Power<br>at Wheel    |         | T    | Power<br>at Wheel |       | T    |
| (rpm)          | (m/s)               | (w)          | (W)               | kg    | lb    | (W)                  | kg      | 1b   | (W)               | kg    | Ib   |
| 0              | 0                   | 0            | 200               | 28.1  | 62    | 300                  | 42.2    | 93   | 400               | >45.4 | >100 |
| 2.61           | 0.1                 | 1            | 15                | 15.9  | 35    | 18                   | 19.1    | 42   | 222               | 34.5  | 92   |
| 13.1           | 0.5                 | 130          | 16                | 4.3   | 9.5   | 34                   | 7.3     | 16   | 54                | 11.8  | 26   |
| 26.1           | 1.0                 | 107          | 23                | 2.5   | 5.44  | 48                   | 5.2     | 11.4 | 73                | 7.9   | 17.4 |
| 39.2           | 1.5                 | 82.5         | 22                | 4.1   | 8.98  | 105                  | 7.5     | 16.6 | 154               | 11.0  | 24.3 |
| 52.2           | 2.0                 | 26           | 57                | 3.1   | 6.76  | 112                  | 6.0     | 13.3 | 166               | 9.1   | 20   |
| 65.3           | 2.5                 | 119          | 45                | 1.9   | 4.26  | 101                  | 4.3     | 9.57 | 157               | 8.8   | 15   |
| 78.3           | 3.0                 | 145          | 30                | 1.1   | 2.37  | 85                   | 3.1     | 6.72 | 140               | 5.0   | 11   |
| 91.4           | 3.5                 | 180          | 10                | 0.3   | 0.676 | 62                   | 1.9     | 4.2  | 115               | 3.5   | 7.8  |
| 104.4          | 4.0                 | 222          | ı                 | ı     | ı     | 37.5                 | 1.0     | 2.21 | 85                | 2.3   | 5.04 |
| 117.5          | 4.5                 | 272          | 1                 | 1     | ١     | 12.3                 | 0.3     | 0.65 | 56                | 1.3   | 2.95 |

TABLE A-5. SUMMARY OF FREE TRACTION FORCES AND T/W VALUES<sup>a</sup>

| Power at Drive Motor | 300 W 400 W | T        | $egin{array}{c ccccc} kg & lb & T/W & kg & lb & T/W \\ \hline \end{array}$ | 42.2 93 0.58 > 45.4 > 100 0.58 | 19.0         42         0.58         34.5         76         0.58 | 7.2 16 0.535 11.6 25.6 0.58 | 5.2 11.4 0.380 7.9 17.4 0.545 | 7.5 16.6 0.286 11.0 24.3 0.418 | 6.0 13.3 0.218 9.0 19.8 0.33 | 4.3         9.57         0.165         6.8         14.9         0.257 | 3.0 6.72 0.116 5.0 11.1 0.191 | 1.9         4.20         0.072         3.5         7.8         0.134 | 1.0 2.21 0.038 2.3 5.04 0.087 |              |
|----------------------|-------------|----------|----------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------|-----------------------------|-------------------------------|--------------------------------|------------------------------|-----------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------|-------------------------------|--------------|
| Power at Drive Mo    | 300 W       |          | lb                                                                         | 93                             | 42                                                                | 16                          | 11.4                          | 16.6                           | 13.3                         | 9.57                                                                  | 6.72                          | 4.20                                                                 | 2.21                          | 0.3 0.65 0.0 |
|                      |             |          | T/W kg                                                                     | 0.400 42.2                     | 0.380 19.0                                                        | 0.290 7.2                   | 0.215 5.2                     | 0.155 7.5                      | 0.112 6.0                    | 0.0734 4.3                                                            | 0.0408 3.0                    | 0.0117 1.9                                                           | 1.0                           | 0.3          |
|                      | 200 W       |          | I qI                                                                       | 62 0.                          | 35.5                                                              | 9.45                        | 5.44 0.                       | 8.98                           | 6.76 0.                      | 4.26 0.                                                               | 2.37 0.                       | 0.68 0.                                                              | -                             |              |
|                      |             | T        | kg                                                                         | 28.1                           | 16.1                                                              | 4.3                         | 2.5                           | 4.1                            | 3.1                          | 1.9                                                                   | 1.1                           | 0.3                                                                  |                               |              |
|                      | Vehicle     | Velocity | (m/s)                                                                      | 0.0                            | 0.1                                                               | 0.5                         | 1.0                           | 1.5                            | 2.0                          | 2.5                                                                   | 3.0                           | 3.5                                                                  | 4.0                           | 4<br>ت       |

T/W value at v=0 cannot exceed maximum traction coefficient of  $\mu_T=0.58$ a. T/W values referred to  $W=26.31~\mathrm{kg}$  (58 lb) normal wheel load

Values have been smoothed over to fit a continuous trace.

#### **APPROVAL**

## LRV OPERATIONAL BEHAVIOR STUDY

#### By Fritz Kramer

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also be reviewed and approved for technical accuracy.

K. L. HEIMBURG

Director, Astronautics Laboratory

## DISTRIBUTION

INTERNAL

DIR DEP-T

AD-S

A&TS-PAT

Mr. L. D. Wofford, Jr.

PM-PR-M

A&TS-MS-H

A&TS-MS-IP (2)

A&TS-MS-IL (8)

A&TS-TU (6)

S&E-ASTN-DIR

Mr. K. Heimburg

Mr. J. E. Kingsbury

Mr. F. Kramer (50)

S&E-ASTN-X

Mr. K. Riggs

S&E-ASTR-DIR

Mr. M. Horton

S&E-ASTR-B

Mr. F. Cagle

S&A-ASTR-G

Mr. C. Mandel

Dr. G. Doane

Mr. P. Broussard

Mr. C. Jones

S&E-ASTR-S

Mr. F. Wojtalik

S&E-ASTR-SD

Mr. E. B. George

S&E-CSE-DIR

Dr. W. Haeussermann

S&E-CSE-L

Mr. J. Hamilton

S&E-P-DIR

Mr. H. Kroeger

Mr. F. Vreuls

S&E-P-LRV

Mr. W. Wagnon

S&E-DIR-R

Mr. H. Weidner

S&E-QUAL-DIR

Mr. J. Trott

PM-SAT-DIR

Mr. R. Smith

Mr. B. Montgomery

PM-SAT-A

Mr. J. Moody

PM-SAT-LRV

Mr. S. F. Morea

Mr. J. Sisson

Mr. J. Jones

Mr. A. Hughes

Mr. W. R. Perry

#### DISTRIBUTION (Concluded)

#### EXTERNAL

Manned Spacecraft Center
Houston, Texas 77058
Attn: Col. James A. McDivitt — PA
Mr. R. Battey — PD
Mr. G. Franklin — CF 131
Mr. D. Pendley — PA
Mr. O. Morris — PA
Maj. C. Duke, Jr. — CB
Mr. H. Scott — PD 5
Mr. W. Scott — FM 7
Maj. A. Aorden — CB
Col. D. Scott — CB
Lt. Col. J. Irwin — CB
Maj. J. Lousma — CB
Dr. R. Parker — CB

NASA Headquarters
Office of Manned Space Flight
Washington, D. C. 20546

Attn: Dr. Rocco Petrone — MA
Mr. W. Stoney, Jr. — MAE
Mr. B. Milwitzky — MAE
Mr. R. Diller — MAE

Mr. J. Cooper -FC 9

Scientific and Technical Information Facility (25)

P. O. Box 33

College Park, Maryland 20740

Attn: NASA Representative (S-AK/RKT)